Abstract

This study explored the application of black box machine learning (ML) to build high throughput models that predict the creep response of Ni-based Alloy 617. Black box ML refers to highly complex machine learning algorithms that generate outputs from inputs without an interpretable internal process. The rapid implementation of suitable heat of alloys into targeted service is impeded by the extended qualification process involving chemistry-processing-structure-performance assessment. The ASME B&PV Code III outlines the requirement of 10,000 h of creep testing before each heat can be qualified for service and 30,000 h for heats that exhibit metastable phases. There is a critical need to shorten the development-to-deployment timeline for heats of an alloy at specific applications. Recent advancement in ML offers the ability to identify correlations in data which is difficult to elucidate by other approaches. To that end, black box ML is employed to expedite the HEAT qualification of Alloy 617 and predict performance from HEAT chemistry out to an unprecedented timescale. In this study, creep data for Ni-based Alloy 617—a solid solution strengthened material is gathered from a wide range of data sources. The alloy chemistry, phases, precipitates, and microstructural features are analyzed to obtain the key strengthening mechanism. Service conditions, mechanical properties, chemistry, and chemical ratios are provided as potential input features. The Pearson correlation coefficient with a 95% confidence bound is employed for input feature screening where poorly correlated inputs are eliminated to speed up the ML process and prevent under- and/or over-fitting of predictions. In the ML algorithm, the selected input features are regarded as predictors, and rupture is regarded as the response. An algorithm evaluation is performed where 20 ML algorithms are trained with the training set. The three-layered neural network (NN) was observed to be the best algorithm for the given data based on statistical rationale. The NN accurately predicts rupture across a range of isotherms and data sources. The interpolative and extrapolative predictions are in compliance with ECCC V5 guidelines. A post-audit validation exhibits neither under- nor over-fitting and confirms the applicability of NN algorithms to unseen data. The black box ML provides a pathway to predict the performance directly from chemistry and opens avenues to rapid heat qualification.

References

1.
Cottrell
,
A. H.
,
1996
, “
Andrade Creep
,”
Philos. Mag. Lett.
,
73
(
1
), pp.
35
36
.10.1080/095008396181082
2.
Miguel
,
M.-C.
,
Vespignani
,
A.
,
Zaiser
,
M.
, and
Zapperi
,
S.
,
2002
, “
Dislocation Jamming and Andrade Creep
,”
Phys. Rev. Lett.
,
89
(
16
), p.
165501
.10.1103/PhysRevLett.89.165501
3.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
ASME Trans. Am. Soc. Mech. Eng.
,
74
(
5
), pp.
765
771
.10.1115/1.4015909
4.
Manson
,
S. S.
, and
Haferd
,
A. M.
,
1953
, “
A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data
,” Lewis Flight Propulsion Laboratory, Cleveland, OH, Report No. NACA-TN-2890.
5.
Manson
,
S. S.
, and
Brown
,
W. F.
,
1953
, “
Time-Temperature-Stress Relations for the Correlation and Extrapolation of Stress-Rupture Data
,”
Proceedings of the American Society for Testing and Materials
, Vol. 53, West Conshohocken, PA, Jan., pp.
693
719
.
6.
Graham
,
A.
, and
Walles
,
K. F. A.
,
1955
, “
Relationships Between Long and Short Time Creep and Tensile Properties of a Commercial Alloy
,”
J. Iron Steel Inst.
,
179
, pp.
104
121
.
7.
Chitty
,
A.
, and
Duval
,
D.
,
1963
, “
Paper 2: The Creep-Rupture Properties of Tubes for High Temperature Steam Power Plant
,”
Proc. Inst. Mech. Eng., Conf. Proc.
,
178
(
1
), pp.
1
4
.10.1243/pime_conf_1963_178_048_02
8.
Orr
,
R. L.
,
Sherby
,
O. D.
, and
Dorn
,
J. E.
,
1953
, “
Correlations of Rupture Data for Metals at Elevated Temperatures
,”
Institute of Engineering Research, University of California
,
Berkeley, CA
, Report No. NP-4765.
9.
Manson
,
S. S.
,
Succop
,
G.
, and
Brown
,
W. F.
, Jr.
,
1959
, “
The Application of Time-Temperature Parameters to Accelerated Creep-Rupture Testing
,”
Trans. ASM
,
51
, pp.
911
934
.
10.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2020
, “
Metamodeling Time-Temperature Creep Parameters
,”
ASME J. Pressure Vessel Technol.
,
142
(
3
), p.
031504
.10.1115/1.4045887
11.
Prager
,
M.
,
1995
, “
Development of the MPC Omega Method for Life Assessment in the Creep Range
,”
ASME J. Pressure Vessel Technol.
,
117
(
2
), pp.
95
103
.10.1115/1.2842111
12.
Evans
,
R. W.
,
Parker
,
J. D.
, and
Wilshire
,
B.
,
1992
, “
The θ Projection Concept—A Model-Based Approach to Design and Life Extension of Engineering Plant
,”
Int. J. Pressure Vessels Piping
,
50
(
1–3
), pp.
147
160
.10.1016/0308-0161(92)90035-E
13.
Wilshire
,
B.
, and
Scharning
,
P. J.
,
2007
, “
Long-Term Creep Life Prediction for a High Chromium Steel
,”
Scr. Mater.
,
56
(
8
), pp.
701
704
.10.1016/j.scriptamat.2006.12.033
14.
Stewart
,
C. M.
,
2013
, “
A Hybrid Constitutive Model for Creep, Fatigue, and Creep-Fatigue Damage
,”
Ph.D. dissertation
, University of Central Florida, Orlando, FL.https://momrg.cecs.ucf.edu/wp-content/uploads/2019/05/StewartC_PhD.pdf
15.
El Naqa
,
I.
, and
Murphy
,
M. J.
,
2015
, “
What Is Machine Learning
?,” Machine
Learning in Radiation Oncology
,
Springer
, Cham, Switzerland, pp.
3
11
.
16.
Bell
,
J.
,
2022
, “
What Is Machine Learning
?,”
Machine Learning and the City: Applications in Architecture and Urban Design
,
Wiley
, Hoboken, NJ, pp.
207
216
.
17.
Xin
,
D.
,
Ma
,
L.
,
Liu
,
J.
,
Macke
,
S.
,
Song
,
S.
, and
Parameswaran
,
A.
,
2018
, “
Accelerating Human-in-the-Loop Machine Learning: Challenges and Opportunities
,”
SIGMOD/PODS'18: International Conference on Management of Data
, Houston, TX, June 15, pp.
1
4
.10.1145/3209889.3209897
18.
Mosqueira-Rey
,
E.
,
Hernández-Pereira
,
E.
,
Alonso-Ríos
,
D.
,
Bobes-Bascarán
,
J.
, and
Fernández-Leal
,
Á.
,
2023
, “
Human-in-the-Loop Machine Learning: A State of the Art
,”
Artif. Intell. Rev.
,
56
(
4
), pp.
3005
3054
.10.1007/s10462-022-10246-w
19.
Agrawal
,
A.
,
Deshpande
,
P. D.
,
Cecen
,
A.
,
Basavarsu
,
G. P.
,
Choudhary
,
A. N.
, and
Kalidindi
,
S. R.
,
2014
, “
Exploration of Data Science Techniques to Predict Fatigue Strength of Steel From Composition and Processing Parameters
,”
Integr. Mater. Manuf. Innovation
,
3
(
1
), pp.
90
108
.10.1186/2193-9772-3-8
20.
Peng
,
J.
,
Yamamoto
,
Y.
,
Hawk
,
J. A.
,
Lara-Curzio
,
E.
, and
Shin
,
D.
,
2020
, “
Coupling Physics in Machine Learning to Predict Properties of High-Temperatures Alloys
,”
npj Comput. Mater.
,
6
(
1
), p.
141
.10.1038/s41524-020-00407-2
21.
Yan
,
F.
,
Song
,
K.
,
Liu
,
Y.
,
Chen
,
S.
, and
Chen
,
J.
,
2020
, “
Predictions and Mechanism Analyses of the Fatigue Strength of Steel Based on Machine Learning
,”
J. Mater. Sci.
,
55
(
31
), pp.
15334
15349
.10.1007/s10853-020-05091-7
22.
Gaultois
,
M. W.
,
Oliynyk
,
A. O.
,
Mar
,
A.
,
Sparks
,
T. D.
,
Mulholland
,
G. J.
, and
Meredig
,
B.
,
2016
, “
Perspective: Web-Based Machine Learning Models for Real-Time Screening of Thermoelectric Materials Properties
,”
APL Mater.
,
4
(
5
), p.
53213
.10.1063/1.4952607
23.
Hautier
,
G.
,
Fischer
,
C. C.
,
Jain
,
A.
,
Mueller
,
T.
, and
Ceder
,
G.
,
2010
, “
Finding Nature's Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
,”
Chem. Mater.
,
22
(
12
), pp.
3762
3767
.10.1021/cm100795d
24.
Liu
,
R.
,
Kumar
,
A.
,
Chen
,
Z.
,
Agrawal
,
A.
,
Sundararaghavan
,
V.
, and
Choudhary
,
A.
,
2015
, “
A Predictive Machine Learning Approach for Microstructure Optimization and Materials Design
,”
Sci. Rep.
,
5
(
1
), pp.
1
12
.10.1038/srep11551
25.
Yang
,
Z.
,
Yabansu
,
Y. C.
,
Al-Bahrani
,
R.
,
Liao
,
W.
,
Choudhary
,
A. N.
,
Kalidindi
,
S. R.
, and
Agrawal
,
A.
,
2018
, “
Deep Learning Approaches for Mining Structure-Property Linkages in High Contrast Composites From Simulation Datasets
,”
Comput. Mater. Sci.
,
151
, pp.
278
287
.10.1016/j.commatsci.2018.05.014
26.
Li
,
J.
,
Zhang
,
Y.
,
Cao
,
X.
,
Zeng
,
Q.
,
Zhuang
,
Y.
,
Qian
,
X.
, and
Chen
,
H.
,
2020
, “
Accelerated Discovery of High-Strength Aluminum Alloys by Machine Learning
,”
Commun. Mater.
,
1
(
1
), p.
73
.10.1038/s43246-020-00074-2
27.
Kumar
,
U.
,
Nayak
,
S.
,
Chakrabarty
,
S.
,
Bhattacharjee
,
S.
, and
Lee
,
S.-C.
,
2020
, “
Gallium–Boron–Phosphide (GaBP 2): A New III–V Semiconductor for Photovoltaics
,”
J. Mater. Sci.
,
55
(
22
), pp.
9448
9460
.10.1007/s10853-020-04631-5
28.
Wei
,
J.
,
Chu
,
X.
,
Sun
,
X.
,
Xu
,
K.
,
Deng
,
H.
,
Chen
,
J.
,
Wei
,
Z.
, and
Lei
,
M.
,
2019
, “
Machine Learning in Materials Science
,”
InfoMat
,
1
(
3
), pp.
338
358
.10.1002/inf2.12028
29.
Morgan
,
D.
, and
Jacobs
,
R.
,
2020
, “
Opportunities and Challenges for Machine Learning in Materials Science
,”
Annu. Rev. Mater. Res.,
50(1), pp. 71–103.10.1146/annurev-matsci-070218-010015
30.
Liang
,
M.
,
Chang
,
Z.
,
Wan
,
Z.
,
Gan
,
Y.
,
Schlangen
,
E.
, and
Šavija
,
B.
,
2022
, “
Interpretable Ensemble-Machine-Learning Models for Predicting Creep Behavior of Concrete
,”
Cem. Concr. Compos.
,
125
, p.
104295
.10.1016/j.cemconcomp.2021.104295
31.
Peng
,
J.
,
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Lee
,
S.
,
Haynes
,
J. A.
, and
Shin
,
D.
,
2021
, “
Uncertainty Quantification of Machine Learning Predicted Creep Property of Alumina-Forming Austenitic Alloys
,”
JOM
,
73
(
1
), pp.
164
173
.10.1007/s11837-020-04423-x
32.
Gu
,
H.-H.
,
Wang
,
R.-Z.
,
Zhu
,
S.-P.
,
Wang
,
X.-W.
,
Wang
,
D.-M.
,
Zhang
,
G.-D.
,
Fan
,
Z.-C.
,
Zhang
,
X.-C.
, and
Tu
,
S.-T.
,
2022
, “
Machine Learning Assisted Probabilistic Creep-Fatigue Damage Assessment
,”
Int. J. Fatigue
,
156
, p.
106677
.10.1016/j.ijfatigue.2021.106677
33.
Venkatesh
,
V.
, and
Rack
,
H. J.
,
1999
, “
A Neural Network Approach to Elevated Temperature Creep–Fatigue Life Prediction
,”
Int. J. Fatigue
,
21
(
3
), pp.
225
234
.10.1016/S0142-1123(98)00071-1
34.
Liu
,
Y.
,
Wu
,
J.
,
Wang
,
Z.
,
Lu
,
X.-G.
,
Avdeev
,
M.
,
Shi
,
S.
,
Wang
,
C.
, and
Yu
,
T.
,
2020
, “
Predicting Creep Rupture Life of Ni-Based Single Crystal Superalloys Using Divide-and-Conquer Approach Based Machine Learning
,”
Acta Mater.
,
195
, pp.
454
467
.10.1016/j.actamat.2020.05.001
35.
Verma
,
A. K.
,
Hawk
,
J. A.
,
Bruckman
,
L. S.
,
French
,
R. H.
,
Romanov
,
V.
, and
Carter
,
J. L. W.
,
2019
, “
Mapping Multivariate Influence of Alloying Elements on Creep Behavior for Design of New Martensitic Steels
,”
Metall. Mater. Trans. A
,
50
(
7
), pp.
3106
3120
.10.1007/s11661-019-05234-9
36.
Yoo
,
Y. S.
,
Jo
,
C. Y.
, and
Jones
,
C. N.
,
2002
, “
Compositional Prediction of Creep Rupture Life of Single Crystal Ni Base Superalloy by Bayesian Neural Network
,”
Mater. Sci. Eng., A
,
336
(
1–2
), pp.
22
29
.10.1016/S0921-5093(01)01965-7
37.
Frolova
,
O.
,
Roos
,
E.
,
Maile
,
K.
, and
Müller
,
W.
,
2011
, “
Representation of the Heat Specific Creep Rupture Behaviour of 9% Cr Steels Using Neural Networks
,”
Trans. Mach. Learn. Data Min.
,
4
(
1
), pp.
1
16
.https://www.researchgate.net/publication/220593765_Representation_of_the_heat_specific_creep_rupture_behaviour_of_9Cr_steels_using_neural_networks
38.
Hu
,
X.
,
Wang
,
J.
,
Wang
,
Y.
,
Li
,
J.
,
Wang
,
Z.
,
Dang
,
Y.
, and
Gu
,
Y.
,
2018
, “
Two-Way Design of Alloys for Advanced Ultra Supercritical Plants Based on Machine Learning
,”
Comput. Mater. Sci.
,
155
, pp.
331
339
.10.1016/j.commatsci.2018.09.003
39.
Wang
,
J.
,
Fa
,
Y.
,
Tian
,
Y.
, and
Yu
,
X.
,
2021
, “
A Machine-Learning Approach to Predict Creep Properties of Cr–Mo Steel With Time-Temperature Parameters
,”
J. Mater. Res. Technol.
,
13
, pp.
635
650
.10.1016/j.jmrt.2021.04.079
40.
He
,
J.-J.
,
Sandström
,
R.
,
Zhang
,
J.
, and
Qin
,
H.-Y.
,
2023
, “
Application of Soft Constrained Machine Learning Algorithms for Creep Rupture Prediction of an Austenitic Heat Resistant Steel Sanicro 25
,”
J. Mater. Res. Technol.
,
22
, pp.
923
937
.10.1016/j.jmrt.2022.11.154
41.
Juan
,
Y.
,
Dai
,
Y.
,
Yang
,
Y.
, and
Zhang
,
J.
,
2021
, “
Accelerating Materials Discovery Using Machine Learning
,”
J. Mater. Sci. Technol.
,
79
, pp.
178
190
.10.1016/j.jmst.2020.12.010
42.
Shin
,
D.
,
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Lee
,
S.
, and
Haynes
,
J. A.
,
2019
, “
Modern Data Analytics Approach to Predict Creep of High-Temperature Alloys
,”
Acta Mater.
,
168
, pp.
321
330
.10.1016/j.actamat.2019.02.017
43.
Ling
,
J.
,
Antono
,
E.
,
Bajaj
,
S.
,
Paradiso
,
S.
,
Hutchinson
,
M.
,
Meredig
,
B.
, and
Gibbons
,
B. M.
,
2018
, “
Machine Learning for Alloy Composition and Process Optimization
,”
ASME
Paper No. GT2018-75207.10.1115/GT2018-75207
44.
Wright
,
R. N.
,
2021
, “
Draft ASME Boiler and Pressure Vessel Code Cases and Technical Bases for Use of Alloy 617 for Constructions of Nuclear Component Under Section III, Division 5
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
INL/EXT-15-36305 Rev 2
.https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_54910.pdf
45.
Boiler
,
A.
,
1998
, “
ASME Boiler and Pressure Vessel Code: An International Code
,”
American Society of Mechanical Engineers
,
New York
.
46.
Mankins
,
W. L.
,
Hosier
,
J. C.
, and
Bassford
,
T. H.
,
1974
, “
Microstructure and Phase Stability of INCONEL Alloy 617
,”
Metall. Trans.
,
5
(
12
), pp.
2579
2590
.10.1007/BF02643879
47.
Chai
,
M.
,
He
,
Y.
,
Li
,
Y.
,
Song
,
Y.
,
Zhang
,
Z.
, and
Duan
,
Q.
,
2023
, “
Machine Learning-Based Framework for Predicting Creep Rupture Life of Modified 9Cr-1Mo Steel
,”
Appl. Sci.
,
13
(
8
), p.
4972
.10.3390/app13084972
48.
Ren
,
W.
,
2005
, “
Development of a Controlled Material Specification for Alloy 617 for Nuclear Applications
,”
Oak Ridge National Laboratory (ORNL)
,
Oak Ridge, TN
, Report No.
ORNL/TM-2005/504
.https://info.ornl.gov/sites/publications/files/Pub92.pdf
49.
Farache
,
D. E.
,
Nishibuchi
,
G. M.
,
Elizondo
,
S.
,
Gulley
,
J. G.
,
Post
,
A.
,
Stubbs
,
K.
,
Kruger
,
K.
,
Mannodi-Kanakkithodi
,
A.
, and
Titus
,
M. S.
,
2023
, “
Linking Stress-Rupture Properties to Processing Parameters of HAYNES® 718 Nickel Superalloy Using Machine Learning
,”
TMS Annual Meeting and Exhibition
, San Diego, CA, Mar. 19–23, pp.
383
398
.10.1007/978-3-031-27447-3_24
50.
Holdsworth
,
S.
,
2008
, “
The European Creep Collaborative Committee (ECCC) Approach to Creep Data Assessment
,”
ASME J. Pressure Vessel Technol.
,
130
(
2
), p.
024001
.10.1115/1.2894296
51.
Holdsworth
,
S. R.
,
2007
, “
The ECCC Approach to Creep Data Assessment
,”
ASME
Paper No. CREEP2007-26797.10.1115/CREEP2007-26797
52.
Rudin
,
C.
, and
Radin
,
J.
,
2019
, “
Why Are We Using Black Box Models in AI When We Don't Need To? A Lesson From an Explainable AI Competition
,”
Harv. Data Sci. Rev.
,
1
(
2
), pp.
1
9
.10.1162/99608f92.5a8a3a3d
You do not currently have access to this content.