Abstract

This paper presents an analysis of the unsteady heat release rate response of premixed flames to equivalence ratio perturbations for an industrial premixed swirl-based burner. During this investigation, perfectly and technically premixed flames were acoustically forced via fuel/air mixture flow and air flow modulations, respectively, at the same operating conditions. From the resulting flame transfer functions (FTFs), measured using the multimicrophone method, the equivalence ratio driven FTF was isolated and extracted by removing the velocity driven component, i.e., the measured FTF from the perfectly premixed flame, from the technically premixed FTF with two novel extraction techniques. The results are compared with FTFs obtained directly in a previous experimental campaign where the fuel flow was acoustically forced, the resulting equivalence ratio fluctuations measured via an infrared absorption technique, and the heat release rate response to the forcing was quantified using chemiluminescence measurements. The results from both measurement approaches agreed well highlighting the validity of the techniques. Further, to understand the governing features of the equivalence ratio driven FTF, a physics-based analytical model following the G-equation approach was developed. The contributions from flame surface area, flame speed, and heat of reaction oscillations were modeled to describe the heat release rate dynamics. A limited number of physical parameters in the analytical model were anchored on one test condition, optimized and restricted to values, which were all physically reasonable, and were subsequently used for model predictions at other operating conditions. The FTF model predictions compared well with experimental data across a range of different operating conditions. Finally, the relative contributions from flame surface area, flame speed, and heat of reaction oscillations on the features of the FTFs were identified and explored.

References

1.
Lieuwen
,
T.
,
2021
,
Unsteady Combustor Physics
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
2.
Fleifel
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
, pp.
487
510
.10.1016/0010-2180(96)00049-1
3.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.10.1115/1.1339002
4.
Richards
,
G. A.
, and
Janus
,
M. C.
,
1998
, “
Characterization of Oscillations During Premix Gas Turbine Combustion
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
294
302
.10.1115/1.2818120
5.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.10.1115/1.1365159
6.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
765
773
.10.1016/S0082-0784(00)80279-9
7.
Cho
,
J. H.
, and
Lieuwen
,
T.
,
2005
, “
Laminar Premixed Flame Response to Equivalence Ratio Oscillations
,”
Combust. Flame
,
140
(
1–2
), pp.
116
129
.10.1016/j.combustflame.2004.10.008
8.
John
,
T.
,
Magina
,
N.
,
Han
,
F.
,
Kaufmann
,
J.
,
Vogel
,
M.
, and
Sattelmayer
,
T.
,
2024
, “
Modeling Flame Transfer Functions of an Industrial Premixed Burner
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051015
.10.1115/1.4063780
9.
Kuhlmann
,
J.
,
Marragou
,
S.
,
Boxx
,
I.
,
Schuller
,
T.
, and
Polifke
,
W.
,
2022
, “
LES-Based Prediction of Technically Premixed Flame Dynamics and Comparison With Perfectly Premixed Mode
,”
Phys. Fluids
,
34
(
8
), p.
085125
.10.1063/5.0098962
10.
Wysocki
,
S.
,
Di-Chiaro
,
G.
, and
Biagioli
,
F.
,
2015
, “
Effect of Fuel Mixture Fraction and Velocity Perturbations on the Flame Transfer Function of Swirl Stabilized Flames
,”
Combust. Theory Modell.
,
19
(
6
), pp.
714
743
.10.1080/13647830.2015.1081410
11.
Orawannukul
,
P.
,
Lee
,
J. G.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2011
, “
Fuel-Forced Flame Response of a Lean-Premixed Combustor
,”
ASME
Paper No. GT2011-46022.10.1115/GT2011-46022
12.
Orawannukul
,
P.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2013
, “
An Experimental Validation of Heat Release Rate Fluctuation Measurements in Technically Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121505
.10.1115/1.4025238
13.
Ćosić
,
B.
,
Terhaar
,
S.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2015
, “
Response of a Swirl-Stabilized Flame to Simultaneous Perturbations in Equivalence Ratio and Velocity at High Oscillation Amplitudes
,”
Combust. Flame
,
162
(
4
), pp.
1046
1062
.10.1016/j.combustflame.2014.09.025
14.
Schuermans
,
B.
,
Guethe
,
F.
,
Pennell
,
D.
,
Guyot
,
D.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111503
.10.1115/1.4000854
15.
Biagioli
,
F.
,
Innocenti
,
A.
,
Lamraoui
,
A.
, and
Syed
,
K. J.
,
2022
, “
Analytical Modelling of Flame Transfer Functions for Technically Premixed Flames
,”
Int. J. Spray Combust. Dyn.
,
14
(
1–2
), pp.
42
54
.10.1177/17568277221094403
16.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames, Part I: Model Structure and Identification
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
199
228
.10.1260/175682709788707431
17.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.10.1115/GT2004-53831
18.
Vogel
,
M.
,
Kaufmann
,
J.
,
Völkl
,
V.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2023
, “
Comparison of Equivalence Ratio Fluctuations in a Lean Premixed Combustor for Kerosene and Natural Gas
,”
ASME
Paper No. GT2023-101091.10.1115/GT2023-101091
19.
Blondé
,
A.
,
Schuermans
,
B.
,
Pandey
,
K.
, and
Noiray
,
N.
,
2023
, “
Effect of Hydrogen Enrichment on Transfer Matrices of Fully and Technically Premixed Swirled Flames
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121009
.10.1115/1.4063415
20.
Kather
,
V.
,
Luckoff
,
F.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2021
, “
Interaction of Equivalence Ratio Fluctuations and Flow Fluctuations in Acoustically Forced Swirl Flames
,”
Int. J. Spray Combust. Dyn.
,
13
(
1–2
), pp.
72
95
.10.1177/17568277211015544
21.
Wassmer
,
D.
,
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Moeck
,
J. P.
,
2017
, “
Measurement and Modeling of the Generation and the Transport of Entropy Waves in a Model Gas Turbine Combustor
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
299
309
.10.1177/1756827717696326
22.
Albayrak
,
A.
, and
Polifke
,
W.
,
2018
, “
An Analytical Model Based on the G-Equation for the Response of Technically Premixed Flames to Perturbations of Equivalence Ratio
,”
Int. J. Spray Combust. Dyn.
,
10
(
2
), pp.
103
110
.10.1177/1756827717740776
23.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
24.
Fischer
,
A.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Comparison of Multi-Microphone Transfer Matrix Measurements With Acoustic Network Models of Swirl Burners
,”
J. Sound Vib.
,
298
(
1–2
), pp.
73
83
.10.1016/j.jsv.2006.04.040
25.
Schuermans
,
B.
,
Guethe
,
F.
, and
Mohr
,
W.
,
2010
, “
Optical Transfer Function Measurements for Technically Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
081501
.10.1115/1.3124663
26.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D.
,
2011
, “
Experimental Investigation of the Nonlinear Response of Swirl-Stabilized Flames to Equivalence Ratio Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
021502
.10.1115/1.4001999
27.
Kaufmann
,
J.
,
Vogel
,
M.
, and
Sattelmayer
,
T.
,
2024
, “
Comparison of the Flame Dynamics of a Liquid-Fueled Swirl-Stabilized Combustor for Different Degrees of Fuel-Air Premixing
,”
ASME J. Eng. Gas Turbines Power
,
146
(
3
), p.
031015
.10.1115/1.4063590
28.
Kolla
,
H.
,
Rogerson
,
J. W.
, and
Swaminathan
,
N.
,
2010
, “
Validation of a Turbulent Flame Speed Model Across Combustion Regimes
,”
Combust. Sci. Technol.
,
182
(
3
), pp.
284
308
.10.1080/00102200903341587
29.
Acharya
,
V.
,
Shin
,
D.-H.
, and
Lieuwen
,
T.
,
2013
, “
Premixed Flames Excited by Helical Disturbances: Flame Wrinkling and Heat Release Oscillations
,”
J. Propul. Power
,
29
(
6
), pp.
1282
1291
.10.2514/1.B34883
30.
Endres
,
S. C.
,
Sandrock
,
C.
, and
Focke
,
W. W.
,
2018
, “
A Simplicial Homology Algorithm for Lipschitz Optimization
,”
J. Global Optim.
,
72
(
2
), pp.
181
217
.10.1007/s10898-018-0645-y
31.
Kraft
,
D.
,
1988
, “
A Software Package for Sequential Quadratic Programming
,”
DLR German Aerospace Center – Institute for Flight Mechanics
,
Koln, Germany
, Report No.
DFVLR-FB 88-28.
https://degenerateconic.com/uploads/2018/03/DFVLR_FB_88_28.pdf
You do not currently have access to this content.