Abstract

The proper control of the pressure fluctuations inside the gas turbine combustors is becoming a key factor to contain the pollutant emissions and extend their operability limits, as a consequence of the leaner and leaner mixture the engines have to operate with. In this context, the mitigation of the combustion instabilities through active control strategies is nowadays taking more and more benefits from the most advanced data science techniques. The employment of such algorithms has not only the aim to detect an instability and bring the engine to operate in a stable window but, more and more often, to anticipate the rising of a dominant frequency in an early stage of growth, with advantages in terms of extension of the life of the mechanical components and, more importantly, the reduction of the number of startups. In this context, the present papers presents a reduced order model derived from the dynamic mode decomposition (DMD) algorithm that can be applied to analyze the time signals acquired by the pressure probes installed in a generic gas turbine combustor. The most useful information that are retrieved from the signal are the frequency content and the corresponding growth rate (GR). The latter parameter can be assumed to act like a precursor of the system instability, enabling the possibility to identify a potential issue well in advance with respect to the traditional approaches. This new method can pave the way to new control strategies, depending on the different kind of instabilities detected. Also these aspects will be addressed along this work, focusing the discussion on both thermo-acoustic instabilities and low-frequency tones associated with the flame extinction. Moreover, additional criteria that could be implemented along a control system based on this new methodology will be provided.

References

1.
Brookes
,
S. J.
,
Cant
,
R. S.
,
Dupere
,
I. D.
, and
Dowling
,
A. P.
, “
Computational Modelling of Self-Excited Combustion Instabilities
,”
ASME
Paper No. 2000GT-0104.10.1115/2000GT-0104
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, Combustion Instabilities in Gas Turbine Engines (Progress in Astronautics and Aeronautics), Vol.,
210
,
American, Institute of Aeronautics and Astronautics
,
Reston, VA
.
3.
Xia
,
Y.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Jones
,
W. P.
, and
Rogerson
,
J. W.
, “
Thermoacoustic Limit Cycle Predictions of a Pressurized Longitudinal Industrial Gas Turbine Combustor
,”
ASME
Paper No. GT2018-75146.10.1115/GT2018-75146
4.
Meloni
,
R.
,
Ceccherini
,
G.
,
Michelassi
,
V.
, and
Riccio
,
G.
,
2019
, “
Analysis of the Self-Excited Dynamics of a Heavy-Duty Annular Combustion Chamber by Large-Eddy Simulation
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111016
.10.1115/1.4044929
5.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.10.1016/j.combustflame.2017.05.021
6.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Andreini
,
A.
, and
Meloni
,
R.
,
2021
, “
Lean Blow-Out Prediction in an Industrial Gas Turbine Combustor Through a LES-Based CFD Analysis
,”
Combust. Flame
,
229
, p.
111391
.10.1016/j.combustflame.2021.02.037
7.
Agostinelli
,
P. W.
,
Kwah
,
Y. H.
,
Richard
,
S.
,
Exilard
,
G.
,
Dawson
,
J. R.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2020
, “
Numerical and Experimental Flame Stabilization Analysis in the New Spinning Combustion Technology Framework
,”
ASME
Paper No. GT2020-15035.10.1115/GT2020-15035
8.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
9.
Cerutti
,
M.
,
Giannini
,
N.
,
Ceccherini
,
G.
,
Meloni
,
R.
,
Matoni
,
E.
,
Romano
,
C.
, and
Riccio
,
G.
,
2018
, “
Dry Low NOx Emissions Operability enhancement of a Heavy-Duty Gas Turbine by Means of Fuel Burner Design Development and Testing
,”
ASME
Paper No. GT2018-76587.10.1115/GT2018-76587
10.
Kihun
,
M.
,
Hyunwook
,
J.
,
Jaheon
,
G.
, and
Tae
,
K. K.
,
2019
, “
Combustion-Acoustic Interactions Through Cross-Talk Area Between Adjacent Model Gas Turbine Combustors
,”
Combust. Flame
,
202
, pp.
405
416
.10.1016/j.combustflame.2019.01.027
11.
Ciani
,
A.
,
Wood
,
J. P.
,
Wickström
,
A.
,
Rørtveit
,
G. J.
,
Steeneveldt
,
R.
,
Pettersen
,
J.
,
Wortmann
,
N.
, and
Bothien
,
M. R.
,
2020
, “
Sequential Combustion in Ansaldo Energia Gas Turbines: The Technology Enabler for CO2-Free, Highly Efficient Power Production Based on Hydrogen
,”
ASME
Paper No. GT2020-14794
. 10.1115/GT2020-14794
12.
Poinsot
,
T.
,
Yip
,
B.
,
Veynante
,
D.
,
Trouv
,
A.
,
Samaniego
,
J.
, and
Candel
,
S.
,
1992
, “
Active Control: An Investigation Method for Combustion Instabilities
,”
J. de Phys. III
,
2
(
7
), pp.
1331
1357
.https://ui.adsabs.harvard.edu/abs/1992JPhy3...2.1331P/abstract
13.
Bulat
,
G.
,
Skipper
,
D.
,
McMillan
,
R.
, and
Syed
,
K.
,
2007
, “
Active Control of Fuel Splits in Gas Turbine DLE Combustion Systems
,”
ASME
Paper No. GT2007-27266.10.1115/GT2007-27266
14.
Lieuwen
,
T.
,
2005
, “
Online Combustor Stability Margin Assessment Using Dynamic Pressure Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
478
482
.10.1115/1.1850493
15.
Rouwenhorst
,
D.
,
Widhopf-Fenk
,
R.
,
Hermann
,
J.
,
Häringer
,
M.
,
Becker
,
J.
,
Gerhard
,
J.
, and
Niedermeier
,
J.
,
2018
, “
Part-Load Limit Reduction of a Frame 9E Using a Precursor for Combustion Dynamics
,”
ASME
Paper No. GT2018-75468.10.1115/GT2018-75468
16.
Kobayashi
,
T.
,
Murayama
,
S.
,
Hachijo
,
T.
, and
Gotoda
,
H.
,
2019
, “
Early Detection of Thermoacoustic Combustion Instability Using a Methodology Combining Complex Networks and Machine Learning
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064034
.10.1103/PhysRevApplied.11.064034
17.
Mondal
,
S.
,
Ghalyan
,
N. F.
,
Ray
,
A.
, and
Mukhopadhyay
,
A.
,
2019
, “
Early Detection of Thermoacoustic Instabilities Using Hidden Markov Models
,”
Combust. Sci. Technol.
,
191
(
8
), pp.
1309
1336
.10.1080/00102202.2018.1523900
18.
Lyu
,
Z.
,
Jia
,
X.
,
Yang
,
Y.
,
Hu
,
K.
,
Zhang
,
F.
, and
Wang
,
G.
,
2021
, “
A Comprehensive Investigation of LSTM-CNN Deep Learning Model for Fast Detection of Combustion Instability
,”
Fuel
,
303
, p.
121300
.10.1016/j.fuel.2021.121300
19.
Cellier
,
A.
,
Lapeyre
,
C. J.
,
Öztarlik
,
G.
,
Poinsot
,
T.
,
Schuller
,
T.
, and
Selle
,
L.
,
2021
, “
Detection of Precursors of Combustion Instability Using Convolutional Recurrent Neural Networks
,”
Combust. Flame
,
233
, p.
111558
.10.1016/j.combustflame.2021.111558
20.
Karlstetter
,
R.
,
Widhopf-Fenk
,
R.
,
Hermann
,
J.
,
Rouwenhorst
,
D.
,
Raoofy
,
A.
,
Trinitis
,
C.
, and
Schulz
,
M.
,
2019
, “
Turning Dynamic Sensor Measurements From Gas Turbines Into Insights: A Big Data Approach
,”
ASME
Paper No. GT2019-91259.10.1115/GT2019-91259
21.
Huang
,
C.
,
Anderson
,
W. E.
,
Harvazinski
,
M. E.
, and
Sankaran
,
V.
,
2016
, “
Analysis of Self-Excited Combustion Instabilities Using Decomposition Techniques
,”
Am. Inst. Aeronaut. Astronaut. J.
,
54
(
9
), pp.
2791
2807
.10.2514/1.J054557
22.
Iudiciani
,
P.
,
Duwig
,
C.
,
Husseini
,
S. M.
,
Szasz
,
R. Z.
,
Fuchs
,
L.
, and
Gutmark
,
E. J.
,
2012
, “
Proper Orthogonal Decomposition for Experiemental Investigation of Flame Instabilities
,”
Am. Inst. Aeronaut. Astronaut. J.
,
50
(
9
), pp.
1843
1854
.10.2514/1.J051297
23.
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C.
, and
Meier
,
W.
,
2010
, “
Temporally Resolved Planar Measurements of Transient Phenomena in a Partially Pre-Mixed Swirl Flame in a Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
8
), pp.
1510
1525
.10.1016/j.combustflame.2009.12.015
24.
Borée
,
J.
,
2003
, “
Extended Proper Orthogonal Decomposition: A Tool to Analyze Correlated Events in Turbulent Flows
,”
Exp. Fluid
,
35
(
2
), pp.
188
192
.10.1007/s00348-003-0656-3
25.
Meloni
,
R.
,
Gori
,
S.
,
Andreini
,
A.
, and
Nassini
,
P. C.
,
2021
, “
CO Emission Modelling in a Heavy Duty Annular Combustor Operating With Natural Gas
,”
ASME
Paper No. GT2021-59202.10.1115/GT2021-59202
26.
Meloni
,
R.
,
Andreini
,
A.
, and
Nassini
,
P. C.
,
2021
, “
A Novel LES-Based Process for NOx Emission Assessment in a Premixed Swirl Stabilized Combustion System
,”
ASME
Paper No. GT2021-59215.10.1115/GT2021-59215
27.
Romano
,
S.
,
Meloni
,
R.
,
Riccio
,
G.
,
Nassini
,
P. C.
, and
Andreini
,
A.
,
2021
, “
Modelling of Natural Gas Composition Effect on low-NOx Burners Operation in Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p. 031018.10.1115/1.4049819
You do not currently have access to this content.