This paper introduces scanning Joule expansion microscopy (SJEM), which is a new thermal imaging technique with lateral resolution in the range of 10–50 nm. Based on the atomic force microscope (AFM), SJEM measures the thermal expansion of Joule-heated elements with a vertical resolution of 1 pm, and provides an expansion map of the scanned sample. Sunmicron metal interconnect lines as well as 50-nm-sized single grains of an indium tin oxide resistor were images using SJEM. Since the local expansion signal is a convolution of local material properties, sample height, and as temperature rise, extraction of the thermal image requires deconvolution. This was experimentally achieved by coating the sample with a uniformly thick polymer film, resulting in direct measurement of the sample temperature distribution. A detailed thermal analysis of the metal wire and the substrate showed that the predicted temperature distribution was in good agreement with the measurements of the polymer-coated sample. However, the frequency response of the expansion signal agreed with theoretical predictions only below 30 KHZ, suggesting that contilever dynamics may play a significant role at higher frequencies. The major advantage of SJEM over previously developed submicron thermal imaging techniques is that it eliminates the need to nanofabricate specialized probes and requires only a standard AFM and simple electronics.

1.
Abramowitz, M., and Stegun, I. A., 1972, Handbook of Mathematical Functions, Dover, New York, pp. 378–379.
2.
Binnig
G.
,
Rohrer
H.
,
Gerber
C.
, and
Weibel
E.
,
1982
, “
Surface Studies by Scanning Tunneling Microscopy
,”
Physical Review Letters
, Vol.
49
, pp.
57
61
.
3.
Binnig
G.
,
Quate
C. F.
, and
Gerber
Ch.
,
1986
, “
Atomic Force Microscope
,”
Physical Review Letters
, Vol.
56
, pp.
930
933
.
4.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon Press, Oxford, p. 263.
5.
Fish
G.
,
Bouevitch
O.
,
Kokotoy
S.
, and
Lieberman
K.
,
1995
, “
Ultrafast Response Micropipette Based Thermocouple Sensors
,”
Review of Scientific Instruments
, Vol.
66
, pp.
3300
3306
.
6.
Goodson, K. E., and Asheghi, M., 1997, “Near-Field Optical Thermometry,” Microscale Thermophysical Engineering, in press.
7.
Lai
J.
,
Perazzo
T.
,
Shi
Z.
, and
Majumdar
A.
,
1997
, “
Optimization and Performance of High-Resolution Micro-optomechanical Thermal Sensors
,”
Sensors and Actuators
, Vol.
58
, pp.
113
119
.
8.
Luo
K.
,
Shi
Z.
,
Lai
J.
, and
Majumdar
A.
,
1996
, “
Nanofabrication of Sensors on Cantilever Probe Tips for Scanning Multiprobe Microscopy
,”
Applied Physics Letters
, Vol.
68
, pp.
325
327
.
9.
Luo
K.
,
Shi
Z.
,
Varesi
J.
, and
Majumdar
A.
,
1997
a, “
Sensor Nanofabrication, Performance, and Conduction Mechanisms in Scanning Thermal Microscopy
,”
Journal of Vacuum Science and Technology, B
, Vol.
15
, pp.
349
360
.
10.
Luo, K., Lederman, M., and Majumdar, A., 1997b, “Liquid-Film Mediated Scanning Thermal Microscopy of a Magnetoresistive Head,” Microscale Thermophysical Engineering, in press.
11.
Majumdar
A.
,
Carrejo
J. P.
, and
Lai
J.
,
1993
, “
Thermal Imaging Using the Atomic Force Microscope
,”
Applied Physics Letters
, Vol.
62
, pp.
2501
2503
.
12.
Majumdar
A.
,
Lai
J.
,
Chandrachood
M.
,
Nakabeppu
O.
,
Wu
Y.
, and
Shi
Z.
,
1995
, “
Thermal Imaging by Atomic Force Microscopy Using Thermocouple Cantilever Probes
,”
Review of Scientific Instruments
, Vol.
66
, pp.
3584
3592
.
13.
Martin
Y.
, and
Wickramasinghe
H. K.
,
1987
, “
Study of Dynamic Current Distribution in Logic Circuits by Joule Displacement Microscopy
,”
Applied Physics Letters
, Vol.
50
, pp.
167
168
.
14.
Madou, M., 1997, Fundamentals of Microfabrication, CRC Press, Boca Raton, p. 3.
15.
Nonnenmacher
M.
, and
Wickramasinghe
H. K.
,
1992
, “
Scanning Probe Microscopy of Thermal Conductivity and Sub-surface Properties
,”
Applied Physics Letters
, Vol.
61
, pp.
168
170
.
16.
Pylkki
R. J.
,
Moyer
P. J.
, and
West
P. E.
,
1994
, “
Scanning Near-Field Optical and Scanning Thermal Microscopy
,”
Japanese J. Appl. Phys.
: Part 1, Vol.
33
, pp.
3785
3790
.
17.
Radmacher
M.
,
Cleveland
J. P.
, and
Hansma
P. K.
,
1995
, “
Improvement of Thermally Induced Bending of Cantilevers Used for Atomic Force Microscopy
,”
Scanning
, Vol.
17
, pp.
117
121
.
18.
Sarid, D., 1994, Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces, Oxford Univ. Press, New York.
19.
Varesi
J.
, and
Majumdar
A.
,
1998
, “
Scanning Joule Expansion Microscopy at Nanometer Scales
,”
Applied Physics Letters
, Vol.
72
, pp.
37
39
.
20.
Varesi, J., Muenster, S., and Majumdar, A., 1998, “High-Resolution Current and Temperature Mapping of Electronic Devices Using Scanning Joule Expansion Microscopy,” presented at the IEEE International Reliability Physics Symposium, Reno, Mar. 30–Apr. 2.
21.
Weaver
J. M. R.
,
Walpita
L. M.
, and
Wickramasingle
H. K.
,
1989
, “
Optical Absorption Microscopy and Spectroscopy With Nanometer Resolution
,”
Nature
, Vol.
342
, pp.
783
785
.
22.
Williams
C. C.
, and
Wickramasinghe
H. K.
,
1986
a, “
Scanning Thermal Profiler
,”
Applied Physics Letters
, Vol.
49
, pp.
1587
1589
.
23.
Williams, C. C., and Wickramasinghe, H. K., 1986b, “High Resolution Thermal Microscopy,” Ultrasonics Symposium Proc., B. R. McAvoy, ed., IEEE, New York, PP. 393–397.
24.
Williams, C. C., and Wickramasinghe, H. K., 1988a, “Photothermal Imaging With Sub-100 nm Spatial Resolution,” in: Optical Sciences, A. L. Schawlow, ed., Springer Series, pp. 364–369.
25.
Williams
C. C.
, and
Wickramasinghe
H. K.
,
1988
b, “
Thermal and Photothermal Imaging on a Sub-100 Nanometer Scale
,”
Proc. SPIE
, Vol.
897
, pp.
129
134
.
This content is only available via PDF.
You do not currently have access to this content.