Molecular dynamics simulations are used to study the sub-critical evaporation of a nanometer-size droplet at 300 K and 3 MPa. Classical molecular dynamics techniques are combined with an adaptive tree data structure for the construction of the neighbor lists, allowing efficient simulations using hundreds of thousands of molecules. We present a systematic convergence study of the method demonstrating its convergence for heat conduction problems in submicron scales. These high resolution simulations compute values of the evaporation coefficient that are in excellent agreement with theoretical predictions.

1.
Glassman
,
I.
,
1994
, “
A Look Forward: The Next 25 Years
,”
Combust. Sci. Technol.
,
98
, pp.
217
222
.
2.
Brezinsky
,
K.
,
1994
, “
The Next Twenty Five Years of Combustion Research: One Researcher’s Perspective
,”
Combust. Sci. Technol.
,
98
, pp.
237
243
.
3.
Sirignano
,
W. A.
,
1993
, “
Fluid Dynamics of Sprays—1992 Freeman Scholar Lecture
,”
J. Fluids Eng.
,
115
, pp.
345
378
.
4.
Aggarwal
,
S. K.
, and
Peng
,
F.
,
1995
, “
A Review of Droplet Dynamics and Vaporization Modeling for Engineering Calculations
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
453
461
.
5.
Kuo, K. K.-Y., 1986, Principles of Combustion, John Wiley & Sons, New York.
6.
Shuen
,
J. S.
,
Yang
,
V.
, and
Hsiao
,
C. C.
,
1992
, “
Combustion of Liquid-Fuel Droplets in Supercritical Conditions
,”
Combust. Flame
,
89
, pp.
299
319
.
7.
Yang
,
V.
,
Lin
,
N. N.
, and
Shuen
,
J.-S.
,
1994
, “
Vaporization of Liquid Oxygen (LOX) Droplets in Supercritical Hydrogen Environments
,”
Combust. Sci. Technol.
,
97
, pp.
247
270
.
8.
Protsenko
,
S. P.
, and
Skripov
,
V. P.
,
1977
, “
Molecular-Dynamics Calculation of Thermodynamic Properties and Structure System of Liquid Argon Nuclei
,”
Sov. J. Low Temp. Phys.
,
3
, No.
1
, pp.
1
4
.
9.
Rusanov
,
A. I.
, and
Brodskaya
,
E. N.
,
1977
, “
The Molecular Dynamics Simulation of a Small Drop
,”
J. Colloid Interface Sci.
,
62
, No.
3
, pp.
542
555
.
10.
Powles
,
J. G.
,
Fowler
,
R. F.
, and
Evans
,
W. A. B.
,
1983
, “
A New Method for Computing Surface Tension Using a Drop of Liquid
,”
Chem. Phys. Lett.
,
96
, No.
3
, pp.
289
292
.
11.
Thompson
,
S. M.
,
Gubbins
,
K. E.
,
Walton
,
J. P. R. B.
,
Chantry
,
R. A. R.
, and
Rowlinson
,
J. S.
,
1984
, “
A Molecular Dynamics Study of Liquid Drops
,”
J. Chem. Phys.
,
81
, No.
1
, pp.
530
542
.
12.
Yasuoka
,
K.
,
Matsumoto
,
M.
, and
Kataoka
,
Y.
,
1994
, “
Evaporation and Condensation at a Liquid Surface of Argon
,”
J. Chem. Phys.
,
101
, No.
9
, pp.
7904
7911
.
13.
Matsumoto
,
M.
,
1996
, “
Molecular Dynamics of Liquid Surfaces
,”
Mol. Simul.
,
16
, pp.
209
217
.
14.
Zhakhovskiıˇ
,
V. V.
, and
Anisimov
,
S. I.
,
1997
, “
Molecular-Dynamics Simulation of Evaporation of a Liquid
,”
JETP
,
84
, No.
4
, pp.
734
745
.
15.
Rytko¨nen
,
A.
,
Valkealahti
,
S.
, and
Manninen
,
M.
,
1997
, “
Melting and Evaporation of Argon Clusters
,”
J. Chem. Phys.
,
106
, No.
5
, pp.
1888
1892
.
16.
Long
,
L. N.
,
Micci
,
M. M.
, and
Wong
,
B. C.
,
1996
, “
Molecular Dynamics Simulations of Droplet Evaporation
,”
Comput. Phys. Commun.
,
96
, pp.
167
172
.
17.
Little, J. K., 1996, “Simulation of Droplet Evaporation in Supercritical Environments Using Parallel Molecular Dynamics,” Ph.d. thesis, The Pennsylvania State University.
18.
Kaltz
,
T. L.
,
Long
,
L. N.
,
Micci
,
M. M.
, and
Little
,
J. K.
,
1998
, “
Supercritical Vaporization of Liquid Oxygen Droplets Using Molecular Dynamics
,”
Combust. Sci. Technol.
,
136
, pp.
279
301
.
19.
Svanberg
,
M.
,
Markovic´
,
N.
, and
Petterson
,
J. B. C.
,
1998
, “
Collision Dynamics of Large Water Clusters
,”
J. Chem. Phys.
,
108
, No.
14
, pp.
5888
5897
.
20.
Sikdar
,
S.
, and
Chung
,
J. N.
,
1997
, “
A Quasimolecular Approach for Discrete Study of Droplet Collision
,”
Int. J. Comput. Fluid Dyn.
,
8
, pp.
189
200
.
21.
Murad
,
S.
, and
Law
,
C. K.
,
1999
, “
Molecular Simulation of Droplet Collision in the Presence of Ambient Gas
,”
Mol. Phys.
,
96
, No.
1
, pp.
81
85
.
22.
Ashurst
,
W. T.
, and
Holian
,
B. L.
,
1999
, “
Droplet Size Dependence Upon Volume Expansion Rate
,”
J. Chem. Phys.
,
111
, No.
6
, pp.
2842
2843
. (Letters to the Editor).
23.
Gro¨nbeck
,
H.
,
Toma´nek
,
D.
,
Kim
,
S. G.
, and
Rose´n
,
A.
,
1997
, “
Does Hydrogen Pre-Melt Palladium Clusters?
,”
Chem. Phys. Lett.
,
264
, pp.
39
43
.
24.
Westergren
,
J.
,
Gro¨nbeck
,
H.
,
Kim
,
S.-G.
, and
Toma´nek
,
D.
,
1997
, “
Noble Gas Temperature Control of Metal Clusters: A Molecular Dynamics Study
,”
J. Chem. Phys.
,
107
, No.
8
, pp.
3071
3079
.
25.
Verlet
,
L.
,
1967
, “
Computer Experiments on Classical Fluids
,”
Phys. Rev.
,
159
, pp.
98
103
.
26.
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon Press, Oxford.
27.
Grest
,
G. S.
, and
Du¨nweg
,
B.
,
1989
, “
Vectorized Link Cell FORTRAN Code for Molecular Dynamics Simulations for a Large Number of Particles
,”
Comput. Phys. Commun.
,
55
, pp.
269
285
.
28.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.
29.
Samet, H., 1989, The Design and Analysis of Spatial Data Structures, Addison-Wesley Publishing Company.
30.
Cottet, G.-H., and Koumoutsakos, P., 2000, Vortex Methods: Theory and Practice, Cambridge University Press, New York.
31.
Salmon
,
J. K.
, and
Warren
,
M. S.
,
1993
, “
Skeletons From the Treecode Closet
,”
J. Chem. Phys.
,
111
, pp.
136
155
.
32.
Rabinovich, V. A., Vasserman, A. A., Nedostup, V. I., and Veksler, L. S., 1988, Thermophysical Properties of Neon, Argon, Krypton, and Xenon, Hemisphere.
33.
Reynolds, W. C., 1979, Thermodynamic Properties in SI, Stanford University.
34.
Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., 1967, Molecular Theory of Cases and Liquids, 4th ed., John Wiley & Sons, New York.
35.
Mecke
,
M.
,
Winkelmann
,
J.
, and
Fischer
,
J.
,
1997
, “
Molecular Dynamics Simulation of the Liquid-Vapor Interface: The Lennard-Jones Fluid
,”
J. Chem. Phys.
,
107
, No.
21
, pp.
9264
9270
.
36.
Margerit
,
J.
, and
Sero-Guillaume
,
O.
,
1996
, “
Study of the Evaporation of a Droplet in Its Stagnant Vapor by Asymptotic Matching
,”
Int. J. Heat Mass Transf.
,
39
, No.
18
, pp.
3887
3898
.
You do not currently have access to this content.