A procedure using a long-wavelength pyrometer is developed for the measurement of surface temperatures on materials that are semitransparent at shorter wavelengths, and specific application is made to a dense zirconia ceramic (Mg-PSZ) undergoing laser-assisted machining (LAM). The pyrometer operates in a waveband between 11 and 14 μm, and a detailed description of measurement uncertainties is provided. The largest uncertainties relate to knowledge of the surface emissivity and the large temperature gradients generated by the LAM process. Repeatability of the measurements is demonstrated, and a parametric study of three LAM parameters reveals expected trends.
Issue Section:
Radiative Heat Transfer
1.
Solomah, A. G., 1993, “Laser Machining of Silicon Nitride Ceramics,” in International Conference on Machining of Advanced Materials, S. Jahanmir, ed., Gaithersburg, MD, NIST special publication 847, pp. 543–547.
2.
Morita, N., 1993, “Crack-Free Processing of Hot-Pressed Silicon Nitride Ceramics Using Pulsed YAG Laser,” in International Conference on Machining of Advanced Materials, S. Jahanmir, ed., Gaithersburg, MD, NIST Special Publication 847, pp. 517–524.
3.
Hu¨gel
, H.
, Wiedmaier
, M.
, and Rudlaff
, T.
, 1995
, “Laser Processing Integrated into Machine Tools—Design, Application, Economy
,” Opt. Quantum Electron.
, 27
(12
), pp. 1149
–1164
.4.
Ko¨nig, W., and Zaboklicki, A. K., 1993, “Laser-Assisted Hot Machining of Ceramics and Composite Materials,” in International Conference on Machining of Advanced Materials, S. Jahanmir, ed., Gaithersburg, MD, NIST Special Publication 847, pp. 455–463.
5.
Lei
, S.
, Shin
, Y. C.
, and Incropera
, F. P.
, 2001
, “Experimental Investigation of Thermo-Mechanical Characteristics in Laser Assisted Machining of Silicon Nitride Ceramics
,” ASME J. Manuf. Sci. Eng.
, 123
, pp. 639
–646
.6.
Rozzi
, J. C.
, Pfefferkorn
, F. E.
, Shin
, Y. C.
, and Incropera
, F. P.
, 2000
, “Experimental Evaluation of the Laser Assisted Machining of Silicon Nitride Ceramics
,” ASME J. Manuf. Sci. Eng.
, 122
(4
), pp. 666
–670
.7.
Lei
, S.
, Shin
, Y.
, and Incropera
, F.
, 2000
, “Deformation Mechanisms and Constitutive Modeling for Silicon Nitride Undergoing Laser-Assisted Machining
,” Int. J. Mach. Tools Manuf.
, 40
(15
), pp. 2213
–2233
.8.
Pfefferkorn, F. E., 2002, “Laser-Assisted Machining of Zirconia Ceramics,” Ph.D. thesis, Purdue University, West Lafayette, IN.
9.
Pfefferkorn
, F. E.
, Rozzi
, J. C.
, Incropera
, F. P.
, and Shin
, Y. C.
, 1997
, “Surface Temperature Measurement in Laser-Assisted Machining Processes
,” Exp. Heat Transfer
, 10
(4
), pp. 291
–313
.10.
von Allmen, M., and Blatter, A., 1995, Laser-Beam Interactions with Materials: Physical Principles and Applications, 2nd ed., Springer, Berlin.
11.
DeWitt, D. P., and Nutter, G. D., 1988, eds., Theory and Practice of Radiation Thermometry, J. Wiley & Sons, New York, p. 1138.
12.
Rubin
, M.
, 1985
, “Optical Properties of Soda-Lime Silica Glasses
,” Sol. Energy Mater.
, 12
, pp. 275
–288
.13.
Smakula
, A.
, 1962
, “Synthetic Crystals and Polarizing Materials
,” Opt. Acta
, 9
, pp. 205
–222
.14.
Makino
, T.
, Kunitomo
, T.
, Sakai
, I.
, and Kinoshita
, H.
, 1984
, “Thermal Radiation Properties of Ceramic Materials
,” Heat Transfer-Jpn. Res.
, 13
(4
), pp. 33
–50
.15.
Prochazka
, S.
, and Klug
, F. J.
, 1983
, “Infrared-Transparent Mullite Ceramics
,” J. Am. Ceram. Soc.
, 66
, pp. 874
–880
.16.
Aksay
, I. A.
, Dabbs
, D. M.
, and Sarikaya
, M.
, 1991
, “Mullite for Structural, Electronic, and Optical Applications
,” J. Am. Ceram. Soc.
, 74, pp.
2243
–2358
.17.
Tsukuma
, K.
, 1986
, “Transparent Titania-Yttria-Zirconia Ceramics
,” J. Mater. Sci. Lett.
, 5
, pp. 1143
–1144
.18.
Wahiduzzaman, S., and Morel, T., 1989, “Modeling of the Effect of Translucence of Engineering Ceramics on Heat Transfer in Diesel Engines,” ASME Paper 89-HT-1,
19.
Touloukian, Y. S., and DeWitt, D. P., 1972, Thermal Radiative Properties of Nonmetallic Solids, Plenum Publishing, New York.
20.
Larrick, T. F., 1999, Williamson Corporation, personal communication.
21.
Standard
, O. C.
, and Sorell
, C. C.
, 1998
, “Densification of Zirconia—Conventional Methods
,” Kvant. Elektron. (Moscow)
, 153–154
, pp. 251
–300
.22.
Chaim
, R.
, Heuer
, A. H.
, and Aronov
, V.
, 1990
, “Surface Microstructure Changes on Laser Treatment of MgO-Partially-Stabilized Zirconia
,” J. Am. Ceram. Soc.
, 73
(6
), pp. 1519
–23
.23.
Pfefferkorn, F. E., Incropera, F. P., and Shin, Y. C., 1999, “Transient, Three-Dimensional Heat Transfer Model for Partially Stabilized Zirconia Undergoing Laser-Assisted Machining,” in ASME International Mechanical Engineering Congress and Exposition, Nashville, TN, HTD-Vol. 364-3, pp. 197–209.
24.
Taylor, J. R., 1997, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, Sausalito, CA.
25.
Rozzi
, J. C.
, Incropera
, F. P.
, and Shin
, Y. C.
, 1998
, “Transient Thermal Response of a Rotating Cylindrical Silicon Nitride Workpiece Subjected to a Translating Laser Heat Source: II—Parametric Effects and Assessment of a Simplified Model
,” ASME J. Heat Transfer
, 120
(4
), pp. 907
–915
.26.
Rebro, P. A., Shin, Y. C., and Incropera, F. P., 2001, “Laser-Assisted Machining of Reaction Sintered Mullite Ceramics,” in ASME International Mechanical Engineering Congress and Exposition, New York, NY, CD#3, MED-23341, ASME, New York.
Copyright © 2003
by ASME
You do not currently have access to this content.