A procedure using a long-wavelength pyrometer is developed for the measurement of surface temperatures on materials that are semitransparent at shorter wavelengths, and specific application is made to a dense zirconia ceramic (Mg-PSZ) undergoing laser-assisted machining (LAM). The pyrometer operates in a waveband between 11 and 14 μm, and a detailed description of measurement uncertainties is provided. The largest uncertainties relate to knowledge of the surface emissivity and the large temperature gradients generated by the LAM process. Repeatability of the measurements is demonstrated, and a parametric study of three LAM parameters reveals expected trends.

1.
Solomah, A. G., 1993, “Laser Machining of Silicon Nitride Ceramics,” in International Conference on Machining of Advanced Materials, S. Jahanmir, ed., Gaithersburg, MD, NIST special publication 847, pp. 543–547.
2.
Morita, N., 1993, “Crack-Free Processing of Hot-Pressed Silicon Nitride Ceramics Using Pulsed YAG Laser,” in International Conference on Machining of Advanced Materials, S. Jahanmir, ed., Gaithersburg, MD, NIST Special Publication 847, pp. 517–524.
3.
Hu¨gel
,
H.
,
Wiedmaier
,
M.
, and
Rudlaff
,
T.
,
1995
, “
Laser Processing Integrated into Machine Tools—Design, Application, Economy
,”
Opt. Quantum Electron.
,
27
(
12
), pp.
1149
1164
.
4.
Ko¨nig, W., and Zaboklicki, A. K., 1993, “Laser-Assisted Hot Machining of Ceramics and Composite Materials,” in International Conference on Machining of Advanced Materials, S. Jahanmir, ed., Gaithersburg, MD, NIST Special Publication 847, pp. 455–463.
5.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
2001
, “
Experimental Investigation of Thermo-Mechanical Characteristics in Laser Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
123
, pp.
639
646
.
6.
Rozzi
,
J. C.
,
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
2000
, “
Experimental Evaluation of the Laser Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
666
670
.
7.
Lei
,
S.
,
Shin
,
Y.
, and
Incropera
,
F.
,
2000
, “
Deformation Mechanisms and Constitutive Modeling for Silicon Nitride Undergoing Laser-Assisted Machining
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2213
2233
.
8.
Pfefferkorn, F. E., 2002, “Laser-Assisted Machining of Zirconia Ceramics,” Ph.D. thesis, Purdue University, West Lafayette, IN.
9.
Pfefferkorn
,
F. E.
,
Rozzi
,
J. C.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
,
1997
, “
Surface Temperature Measurement in Laser-Assisted Machining Processes
,”
Exp. Heat Transfer
,
10
(
4
), pp.
291
313
.
10.
von Allmen, M., and Blatter, A., 1995, Laser-Beam Interactions with Materials: Physical Principles and Applications, 2nd ed., Springer, Berlin.
11.
DeWitt, D. P., and Nutter, G. D., 1988, eds., Theory and Practice of Radiation Thermometry, J. Wiley & Sons, New York, p. 1138.
12.
Rubin
,
M.
,
1985
, “
Optical Properties of Soda-Lime Silica Glasses
,”
Sol. Energy Mater.
,
12
, pp.
275
288
.
13.
Smakula
,
A.
,
1962
, “
Synthetic Crystals and Polarizing Materials
,”
Opt. Acta
,
9
, pp.
205
222
.
14.
Makino
,
T.
,
Kunitomo
,
T.
,
Sakai
,
I.
, and
Kinoshita
,
H.
,
1984
, “
Thermal Radiation Properties of Ceramic Materials
,”
Heat Transfer-Jpn. Res.
,
13
(
4
), pp.
33
50
.
15.
Prochazka
,
S.
, and
Klug
,
F. J.
,
1983
, “
Infrared-Transparent Mullite Ceramics
,”
J. Am. Ceram. Soc.
,
66
, pp.
874
880
.
16.
Aksay
,
I. A.
,
Dabbs
,
D. M.
, and
Sarikaya
,
M.
,
1991
, “
Mullite for Structural, Electronic, and Optical Applications
,”
J. Am. Ceram. Soc.
,
74, pp.
2243
2358
.
17.
Tsukuma
,
K.
,
1986
, “
Transparent Titania-Yttria-Zirconia Ceramics
,”
J. Mater. Sci. Lett.
,
5
, pp.
1143
1144
.
18.
Wahiduzzaman, S., and Morel, T., 1989, “Modeling of the Effect of Translucence of Engineering Ceramics on Heat Transfer in Diesel Engines,” ASME Paper 89-HT-1,
19.
Touloukian, Y. S., and DeWitt, D. P., 1972, Thermal Radiative Properties of Nonmetallic Solids, Plenum Publishing, New York.
20.
Larrick, T. F., 1999, Williamson Corporation, personal communication.
21.
Standard
,
O. C.
, and
Sorell
,
C. C.
,
1998
, “
Densification of Zirconia—Conventional Methods
,”
Kvant. Elektron. (Moscow)
,
153–154
, pp.
251
300
.
22.
Chaim
,
R.
,
Heuer
,
A. H.
, and
Aronov
,
V.
,
1990
, “
Surface Microstructure Changes on Laser Treatment of MgO-Partially-Stabilized Zirconia
,”
J. Am. Ceram. Soc.
,
73
(
6
), pp.
1519
23
.
23.
Pfefferkorn, F. E., Incropera, F. P., and Shin, Y. C., 1999, “Transient, Three-Dimensional Heat Transfer Model for Partially Stabilized Zirconia Undergoing Laser-Assisted Machining,” in ASME International Mechanical Engineering Congress and Exposition, Nashville, TN, HTD-Vol. 364-3, pp. 197–209.
24.
Taylor, J. R., 1997, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, Sausalito, CA.
25.
Rozzi
,
J. C.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
,
1998
, “
Transient Thermal Response of a Rotating Cylindrical Silicon Nitride Workpiece Subjected to a Translating Laser Heat Source: II—Parametric Effects and Assessment of a Simplified Model
,”
ASME J. Heat Transfer
,
120
(
4
), pp.
907
915
.
26.
Rebro, P. A., Shin, Y. C., and Incropera, F. P., 2001, “Laser-Assisted Machining of Reaction Sintered Mullite Ceramics,” in ASME International Mechanical Engineering Congress and Exposition, New York, NY, CD#3, MED-23341, ASME, New York.
You do not currently have access to this content.