Analytical solution is developed to calculate the thermal constriction resistance for contacts randomly distributed on the surface of a laterally insulated semi-infinite square prism. The contacts are modeled by circular spots with different radii and uniform heat flux. We analyze the evolution of the thermal constriction resistance as a function of the number of contacts, the relative contact size, and the dispersion of radii of spots. We show that the thermal constriction resistance for random contacts is a few tens of percents greater than that of the regular contacts.
Issue Section:
Technical Notes
1.
Greenwood
, J. A.
, and Williamson
, J. B. P.
, 1966
, “Contact of Nominally Flat Surfaces
,” Proc. R. Soc. London, Ser. A
, A295
, pp. 300
–319
.2.
Cooper
, M. G.
, Mikic
, B. B.
, and Yovanovich
, M. M.
, 1969
, “Thermal Contact Conductance
,” Int. J. Heat Mass Transf.
, 17
, pp. 205
–214
.3.
Mikic
, B. B.
, 1974
, “Thermal Contact Conductance: Theoretical Considerations
,” Int. J. Heat Mass Transf.
, 12
, pp. 279
–300
.4.
Bush
, A. W.
, Gibson
, R. D.
, and Thomas
, T. R.
, 1972
, “The Elastic Contact of Rough Surface
,” Wear
, 35
, pp. 87
–111
.5.
Whitehouse
, D. J.
, and Archard
, J. F.
, 1970
, “The Properties of Random Surfaces of Significance in Their Contact
,” Proc. R. Soc. London, Ser. A
, A316
, pp. 97
–121
.6.
Sridhar
, M. R.
, and Yovanovich
, M. M.
, 1994
, “Review of Elastic and Plastic Contact Conductance Models: Comparison With Experiments
,” J. Thermophys. Heat Transfer
, 8
(4
), pp. 633
–640
.7.
McCool
, J. I.
, 1986
, “Comparison of Models for the Contact of Rough Surfaces
,” Wear
, 107
, pp. 37
–60
.8.
Leung
, M.
, Hsieh
, C. K.
, and Goswami
, D. Y.
, 1998
, “Prediction of Thermal Contact Conductance in Vacuum by Statistical Mechanics
,” ASME J. Heat Transfer
, 120
, pp. 51
–57
.9.
Fletcher
, L. S.
, 1988
, “Recent Developments in Contact Conductance Heat Transfer
,” ASME J. Heat Transfer
, 110
, pp. 1059
–1070
.10.
Yovanovich, M. M., 1976, “General Expression for Circular Constriction Resistances for Arbitrary Flux Distribution,” AIAA 13th Aerospace Sciences Meeting, Pasadena, California, pp. 381–396.
11.
Beck
, J. V.
, 1979
, “Effects of Multiple Sources in the Contact Conductance Theory
,” ASME J. Heat Transfer
, 101
, pp. 132
–136
.12.
Negus
, K. J.
, Yovanovich
, M. M.
, and Beck
, J. V.
, 1989
, “On the Nondimensionalization of Constriction Resistance for Semi-infinite Heat Flux Tubes
,” ASME J. Heat Transfer
, 111
, pp. 804
–807
.13.
Bardon, J. P., 1965, “Contribution to the Study of Thermal Contact Resistance,” (in French), thesis, University of Poitiers, France.
14.
Cooper
, M. G.
, 1969
, “A Note on Electrolytic Analogue Experiments for Thermal Contact Resistance
,” Int. J. Heat Mass Transf.
, 12
, pp. 1715
–1718
.15.
Das
, A. K.
, and Sadhal
, S. S.
, 1999
, “Thermal Constriction Resistance Between two Solids for Random Distribution of Contacts
,” Heat Mass Transfer
, 35
, pp. 101
–111
.16.
Laraqi
, N.
, and Baı¨ri
, A.
, 2002
, “Theory of Thermal Resistance at the Interface of Solids With Randomly Sized and Located Contacts
,” Int. J. Heat Mass Transf.
, 45
(20
), pp. 4175
–4180
.Copyright © 2003
by ASME
You do not currently have access to this content.