Analytical solution is developed to calculate the thermal constriction resistance for contacts randomly distributed on the surface of a laterally insulated semi-infinite square prism. The contacts are modeled by circular spots with different radii and uniform heat flux. We analyze the evolution of the thermal constriction resistance as a function of the number of contacts, the relative contact size, and the dispersion of radii of spots. We show that the thermal constriction resistance for random contacts is a few tens of percents greater than that of the regular contacts.

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
A295
, pp.
300
319
.
2.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transf.
,
17
, pp.
205
214
.
3.
Mikic
,
B. B.
,
1974
, “
Thermal Contact Conductance: Theoretical Considerations
,”
Int. J. Heat Mass Transf.
,
12
, pp.
279
300
.
4.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1972
, “
The Elastic Contact of Rough Surface
,”
Wear
,
35
, pp.
87
111
.
5.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
,
A316
, pp.
97
121
.
6.
Sridhar
,
M. R.
, and
Yovanovich
,
M. M.
,
1994
, “
Review of Elastic and Plastic Contact Conductance Models: Comparison With Experiments
,”
J. Thermophys. Heat Transfer
,
8
(
4
), pp.
633
640
.
7.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
, pp.
37
60
.
8.
Leung
,
M.
,
Hsieh
,
C. K.
, and
Goswami
,
D. Y.
,
1998
, “
Prediction of Thermal Contact Conductance in Vacuum by Statistical Mechanics
,”
ASME J. Heat Transfer
,
120
, pp.
51
57
.
9.
Fletcher
,
L. S.
,
1988
, “
Recent Developments in Contact Conductance Heat Transfer
,”
ASME J. Heat Transfer
,
110
, pp.
1059
1070
.
10.
Yovanovich, M. M., 1976, “General Expression for Circular Constriction Resistances for Arbitrary Flux Distribution,” AIAA 13th Aerospace Sciences Meeting, Pasadena, California, pp. 381–396.
11.
Beck
,
J. V.
,
1979
, “
Effects of Multiple Sources in the Contact Conductance Theory
,”
ASME J. Heat Transfer
,
101
, pp.
132
136
.
12.
Negus
,
K. J.
,
Yovanovich
,
M. M.
, and
Beck
,
J. V.
,
1989
, “
On the Nondimensionalization of Constriction Resistance for Semi-infinite Heat Flux Tubes
,”
ASME J. Heat Transfer
,
111
, pp.
804
807
.
13.
Bardon, J. P., 1965, “Contribution to the Study of Thermal Contact Resistance,” (in French), thesis, University of Poitiers, France.
14.
Cooper
,
M. G.
,
1969
, “
A Note on Electrolytic Analogue Experiments for Thermal Contact Resistance
,”
Int. J. Heat Mass Transf.
,
12
, pp.
1715
1718
.
15.
Das
,
A. K.
, and
Sadhal
,
S. S.
,
1999
, “
Thermal Constriction Resistance Between two Solids for Random Distribution of Contacts
,”
Heat Mass Transfer
,
35
, pp.
101
111
.
16.
Laraqi
,
N.
, and
Baı¨ri
,
A.
,
2002
, “
Theory of Thermal Resistance at the Interface of Solids With Randomly Sized and Located Contacts
,”
Int. J. Heat Mass Transf.
,
45
(
20
), pp.
4175
4180
.
You do not currently have access to this content.