Abstract
It is recently conceptualized that nano-scale machining might be achieved by coupling electron emission with radiation transfer. A laser may be used to heat a workpiece to a threshold temperature, and a nano-probe might then transfer additional energy via electron emission to remove a minute amount of material. To investigate this hypothesis, a detailed numerical study is presented. The electron-beam transport is modeled using a Monte Carlo approach, and a radiation transfer model that includes Fresnel reflections is adapted to simulate laser heating. The numerical study suggests that approximately 0.5 W from a single electron-beam is sufficient to initialize local evaporation from a gold film. With the use of a laser, the required power can be halved if the film is sufficiently thin. This paper describes the details of the numerical study and establishes guidelines for such nano-scale machining processes.