Abstract

It is recently conceptualized that nano-scale machining might be achieved by coupling electron emission with radiation transfer. A laser may be used to heat a workpiece to a threshold temperature, and a nano-probe might then transfer additional energy via electron emission to remove a minute amount of material. To investigate this hypothesis, a detailed numerical study is presented. The electron-beam transport is modeled using a Monte Carlo approach, and a radiation transfer model that includes Fresnel reflections is adapted to simulate laser heating. The numerical study suggests that approximately 0.5 W from a single electron-beam is sufficient to initialize local evaporation from a gold film. With the use of a laser, the required power can be halved if the film is sufficiently thin. This paper describes the details of the numerical study and establishes guidelines for such nano-scale machining processes.

References

1.
Vallance, R. R., Rao, A. M., and Menguc, M. P., 2003, “Processes for Nanomachining Using Carbon Nanotubes,” U.S. Patent No. 6,660,959, issued to University of Kentucky Research Foundation, Lexington, KY.
2.
Taniguchi, N., Ikeda, M., Miyamoto, I., and Miyazaki, T., 1989, Energy-Beam Processing of Materials: Advanced Manufacturing Using Various Energy Sources, Oxford University Press, New York.
3.
Wong
,
B. T.
, and
Mengüç
,
M. P.
,
2004
, “
Monte Carlo Methods in Radiative Transfer and Electron-Beam Processing
,”
J. Quant. Spectrosc. Radiat. Transf.
,
84
, pp.
437
450
.
4.
Wong, B. T., and Mengüç, M. P., 2003, “Electronic Thermal Conduction in Thin Gold Films,” ASME Summer Heat Transfer Conference, Las Vegas, Nevada, Paper No. 47172.
5.
Archard
,
G. D.
,
1961
, “
Back Scattering of Electrons
,”
J. Appl. Phys.
,
32
(
8
), pp.
1505
1509
.
6.
Kanaya
,
K.
, and
Okayama
,
S.
,
1972
, “
Penetration and Energy-Loss Theory of Electrons in Solid Targets
,”
J. Phys. D
,
5
, pp.
43
58
.
7.
Whiddington
,
R.
,
1912
, “
The Transmission of Cathode Rays Through Matter
,”
Proc. R. Soc. London, Ser. A
, Containing Papers of a Mathematical and Physical Character,
86
(
588
), pp.
360
370
.
8.
Trinkle, C. A., Vallance, R. R., Mengüç, M. P., Bah, A., Javed, K., Rao, A. M., and Jin, S., 2002, “Nanoprobe Concepts for Field Emission Nanomachining,” Proceedings of the 17th Annual Meeting of the American Society for Precision Engineering, St. Louis, MO.
9.
Wong
,
B. T.
, and
Mengüç
,
M. P.
,
2002
, “
Comparison of Monte Carlo Techniques to Predict the Propagation of a Collimated Beam in Participating Media
,”
Numer. Heat Transfer, Part B
,
42
, pp.
119
140
.
10.
Joy, D. C., 1995, Monte Carlo Modeling for Electron Microscopy and Microanalysis, Oxford University Press, New York.
11.
Murata
,
K.
,
Matsukawa
,
T.
, and
Shimizu
,
R.
,
1971
, “
Monte Carlo Calculations on Electron Scattering in a Solid Target
,”
Jpn. J. Appl. Phys.
,
10
(
6
), pp.
678
686
.
12.
Shimizu
,
R.
,
Ikuta
,
T.
, and
Murata
,
K.
,
1972
, “
The Monte Carlo Technique as Applied to the Fundamentals of Epma and Sem
,”
J. Appl. Phys.
,
43
, pp.
4233
4249
.
13.
Newbury, D. E., and Myklebust, R. L., 1981, Analytical Electron Microscopy, R. H. Geiss eds., San Francisco Press, San Francisco, pp. 91.
14.
Czyzewski
,
Z.
,
MacCalium
,
D. O. N.
,
Romig
,
A.
, and
Joy
,
D. C.
,
1990
, “
Calculations of Mott Scattering Cross Section
,”
J. Appl. Phys.
,
68
(
7
), pp.
3066
3072
.
15.
Luo
,
S. C.
,
Zhang
,
X.
, and
Joy
,
D. C.
,
1991
, “
Experimental Determinations of Electron Stopping Power at Low Energies
,”
Radiat. Eff. Defects Solids
,
117
, pp.
235
242
.
16.
Joy, D. C., “A Database of Electron-Solid Interactions,” http://web.utk.edu/∼srcutk/.
17.
Hecht, E., 1998, Optics, Addison Wesley Longman, Inc.
18.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, Inc.
19.
Palik, E. D., 1985, Handbook of Optical Constants of Solids, Academic Press, New York.
20.
Majumdar, A., 1998, “Microscale Energy Transport in Solids,” Microscale Energy Transport, C. L. Tien eds., Begell House, New York, pp. 1–93.
21.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
Applied Physics Reviews
,
93
(
2
), pp.
793
818
.
22.
Ashcroft, N. W., and Mermin, N. D., 1976, Solid State Physics, Saunders Company, Philadelphia, PA.
23.
Tzou, D. Y., 1997, Macro- to Microscale Heat Transfer, Taylor & Francis, Washington, DC.
24.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
25.
Matthews, J. H., and Fink, K. D., 1999, Numerical Methods Using Matlab, Prentice Hall, Inc., New Jersey.
26.
Jacques, S. L., and Wang, L., 1995, “Monte Carlo Modeling of Light Transport in Tissues,” Optical-Thermal Response of Laser-Irradiated Tissue, Welch and V. Gemert eds., Plenum Press, New York, pp. 73–100.
27.
Ding
,
Z. J.
, and
Shimizu
,
R.
,
1996
, “
A Monte Carlo Modeling of Electron Interaction With Solids Including Cascade Secondary Electron Production
,”
Scanning
,
18
, pp.
92
113
.
28.
Hohlfeld
,
J.
,
Wellershoff
,
S.-S.
,
Güdde
,
J.
,
Conrad
,
U.
,
Jähnke
,
V.
, and
Matthias
,
E.
,
2000
, “
Electron and Lattice Dynamics Following Optical Excitation of Metals
,”
Chem. Phys.
,
251
, pp.
237
258
.
You do not currently have access to this content.