Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0% for the mock catalytic combustor condition to 14% for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for both the mock catalytic and DLN combustor cases. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95% span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

1.
Kays, W. M., and Crawford, M. E., 1993, Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill, New York.
2.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flow in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
257
.
3.
Klein, A., 1966, “Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbines,” BHRA T 1004.
4.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
pp.
21
28
.
5.
Marchal, P., and Sieverding, C. H., 1977, “Secondary Flows Within Turbomachinery Bladings,” Secondary Flows in Turbomachines, AGARD CP 214.
6.
Ames, F. E., Hylton, L. D., and York, R. E., 1986 (unpublished).
7.
Zess, G. A., and Thole, K. A., 2001, “Computational Design and Experimental Evaluation of Using an Inlet Fillet on a Gas Turbine Vane,” ASME Paper No. 2001-GT-404.
8.
Burd
,
S. W.
, and
Simon
,
T. W.
, “
Flow Measurements in a Nozzle Guide Vane Passage with a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
, pp.
659
666
.
9.
York
,
R. E.
,
Hylton
,
L. D.
, and
Milelc
,
M. S.
,
1984
, “
An Experimental Investigation of Endwall Heat Transfer and Aerodynamics in a Linear Vane Cascade
,”
ASME J. Eng. Gas Turbines Power
,
106
, p.
159
159
.
10.
Harasgama
,
S. P.
, and
Wedlake
,
E. T.
,
1989
, “
Heat Transfer and Aerodynamics of a High Rim Speed Turbine Nozzle Guide Vane Tested in the RAE Isentropic Light Piston Cascade
,”
ASME J. Turbomach.
,
113
, pp.
384
391
.
11.
Spencer
,
M. C.
,
Jones
,
T. V.
, and
Lock
,
G. D.
,
1996
, “
Endwall Heat Transfer Measurements in an Annular Cascade of Nozzle Guide Vanes at Engine Representative Reynolds and Mach Numbers
,”
Int. J. Heat Fluid Flow
,
17
, pp.
139
147
.
12.
Arts, T., and Heider, R., 1994, “Aerodynamic and Thermal Performance of a Three Dimensional Annular Transonic Nozzle Guide Vane, Part I—Experimental Investigation,” Paper No. 1994-31, 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.
13.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects in the Endwall Leading Edge Region
,”
ASME J. Turbomach.
,
122
, pp.
699
708
.
14.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
,
2003
, “
Effects of Aeroderivative Combustor Turbulence on Endwall Heat Transfer Distributions Acquired in a Linear Vane Cascade
,”
ASME J. Turbomach.
,
125
, pp.
210
220
.
15.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
.
16.
Giel, P. W., Thurman, D. R., Van Fossen, G. J., Hippensteele, A. A., and Boyle, R. J., 1996, “Endwall Heat Transfer Measurements in a Transonic Turbine Cascade,” ASME Paper No. 96-GT-180.
17.
Boyle, R. J., and Lucci, B. L., 1996, “Predicted Turbine Heat Transfer for a Range of Test Conditions,” ASME Paper No. 96-GT-304.
18.
FLUENT 5.5, 2000, FLUENT 5.5 User’s Guide, Fluent, Inc., Lebanon, NH.
19.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
You do not currently have access to this content.