Abstract

This study addresses the conjugate heat transfer problem of hydrodynamically developed turbulent flow in a circular pipe. An inverse method is used to estimate the time-varying inlet temperature and the outer-wall heat flux simultaneously on the basis of temperature measurements taken at two different locations within the pipe flow. The present approach rearranges the matrix forms of the governing differential equations and then applies a whole domain estimation with the function specification method and the linear least-squares-error method to determine the two boundary conditions of the pipe flow. The dimensionless temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of temperature measurement errors upon the precision of the estimated results is investigated. The proposed method provides several advantages compared to traditional methods: (1) it yields a solution within a single computational iteration, (2) no prior information is required regarding the functional form of the quantities of interest, (3) no initial guesses of the unknown parameter values are required, and (4) the inverse problem can be solved in a linear domain. This study also considers the influence of the location of the temperature measurement sensors upon the accuracy of the calculated results. The numerical results confirm that the proposed method provides an efficient, robust, and accurate means of estimating the inlet temperature and outer-wall heat flux simultaneously in turbulent pipe flow.

1.
Zariffeh
,
E. K.
,
Soliman
,
H. M.
, and
Trupp
,
A. C.
, 1982, “
The Combined Effects of Wall and Fluid Axial Conduction on Laminar Heat Transfer in Circular Tubes
,”
Proc. 7th Int. Heat Transfer Conf.
, Munich, Germany
4
, pp.
131
136
.
2.
Bernier
,
M. A.
, and
Baliga
,
B. R.
, 1992, “
Conjugate Conduction and Laminar Mixed Convection in Vertical Pipes for Upward Flow and Uniform Wall Heat Flux
,”
Numer. Heat Transfer, Part A
1040-7782,
21
, pp.
313
332
.
3.
Faghri
,
M.
, and
Sparrow
,
E. M.
, 1980, “
Simultaneous Wall and Fluid Axial Conduction in Laminar Pipe-Flow Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
58
63
.
4.
Campo
,
A.
, and
Schuler
,
C.
, 1988, “
Heat Transfer in Laminar Flow Through Circular Tubes Accounting for Two-Dimensional Wall Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
2251
2259
.
5.
Chen
,
H. T.
,
Lin
,
S. Y.
, and
Fang
,
L. C.
, 2001, “
Estimation of Surface Temperature in Two-Dimensional Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1455
1463
.
6.
Maillet
,
D.
,
Degiovanni
,
A.
, and
Pasquetti
,
R.
, 1991, “
Inverse Heat Conduction Applied to the Measurement of Heat Transfer Coefficient on a Cylinder: Comparison Between an Analytical and a Boundary Element Technique
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
549
557
.
7.
Martin
,
T. J.
, and
Dulikavich
,
G. S.
, 1998, “
Inverse Determination of Steady Heat Convection Coefficient Distributions
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
328
334
.
8.
Lin
,
J. H.
,
Chen
,
C. K.
, and
Yang
,
Y. T.
, 2002, “
An Inverse Method for Simultaneous Estimation of the Center and Surface Thermal Behavior of a Heated Cylinder Normal to a Turbulent Air Stream
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
601
608
.
9.
Kim
,
S. K.
, and
Lee
,
W. I.
, 2002, “
An Inverse Method for Estimating Thermophysical Properties of Fluid Flowing in a Circular Duct
,”
Int. Commun. Heat Mass Transfer
0735-1933,
29
(
8
), pp.
1029
1036
.
10.
Sawaf
,
B.
,
Özisik
,
M. N.
, and
Jarny
,
Y.
, 1995, “
An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
16
), pp.
3005
3010
.
11.
Su
,
Jian
,
Lopes
,
Adriane B.
, and
Silva Neto
,
A. J.
, 2000, “
Estimation of Unknown Wall Heat Flux in Turbulent Circular Pipe Flow
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
, pp.
945
954
.
12.
Su
,
Jian
, and
Silva Neto
,
A. J.
, 2001, “
Simultaneous Estimation of Inlet Temperature and Wall Heat Flux in Turbulent Circular Pipe Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
40
, pp.
751
766
.
13.
Park
,
H. M.
, and
Lee
,
J. H.
, 1998, “
A Method of Solving Inverse Convection Problem by Means of Mode Reduction
,”
Chem. Eng. Sci.
0009-2509,
53
(
9
), pp.
1731
1744
.
14.
Bokar
,
J. C.
, and
Özisik
,
M. N.
, 1995, “
An Inverse Analysis for Estimating the Time-Varying Inlet Temperature in Laminar Flow Inside a Parallel Plate Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
1
), pp.
39
45
.
15.
Li
,
H. Y.
, and
Yan
,
W. M.
, 2000, “
Inverse Convection Problem for Determining Wall Heat Flux in Annular Duct Flow
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
460
464
.
16.
Li
,
H. Y.
, and
Yan
,
W. M.
, 2003, “
Identification of Wall Heat Flux for Turbulent Forced Convection by Inverse Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1041
1048
.
17.
Yang
,
C. Y.
, and
Chen
,
C. K.
, 1996, “
The Boundary Estimation in Two-Dimensional Inverse Heat Conduction Problems
,”
J. Phys. D
0022-3727,
29
, pp.
333
339
.
18.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw–Hill
, New York, pp.
246
249
.
19.
Reichardt
,
H.
, 1951, “
Vollstndige Darstellung der Turbulenten Geschwindigkeitsverteilung in Glatten Leitungen
,”
Z. Angew. Math. Mech.
0044-2267,
31
, pp.
208
219
.
20.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
C. R.
, 1985,
Inverse Heat Conduction-Ill-Posed Problem
,
Wiley
, New York.
21.
Chantasiriwan
,
S.
, 2000, “
Inverse Heat Conduction Problem of Determining Time-Dependent Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
4275
4285
.
You do not currently have access to this content.