Self-heating in deep submicron transistors (e.g., silicon-on-insulator and strained-Si) and thermal engineering of many nanoscale devices such as nanocalorimeters and high-density thermomechanical data storage are strongly influenced by thermal conduction in ultra-thin silicon layers. The lateral thermal conductivity of single-crystal silicon layers of thicknesses 20 and 100nm at temperatures between 30 and 450K are measured using joule heating and electrical-resistance thermometry in suspended microfabricated structures. In general, a large reduction in thermal conductivity resulting from phonon-boundary scattering is observed. Thermal conductivity of the 20nm thick silicon layer at room temperature is nearly 22Wm1K1, compared to the bulk value, 148Wm1K1. The predictions of the classical thermal conductivity theory that accounts for the reduced phonon mean free paths based on a solution of the Boltzmann transport equation along a layer agrees well with the experimental results.

1.
Furuya
,
M.
,
Fujiwara
,
S.
, and
Kimura
,
M.
, 2002, “
Miniaturized Thermal Analysis Sensor Using Micro-Heaters on SOI Substrate
,”
Trans. Instit. Electrical Eng. Japan
,
122-E
, pp.
207
211
.
2.
Billat
,
S.
,
Glosch
,
H.
,
Kunze
,
M.
,
Hedrich
,
F.
,
Frech
,
J.
,
Auber
,
J.
,
Lang
,
W.
,
Sandmaier
,
H.
, and
Wimmer
,
W.
, 2001, “
Convection-Based Micromachined Inclinometer Using SOI Technology
,”
14th IEEE International Conference on MicroElectroMechanicalSystems
, Interlaken, Switzerland, pp.
159
161
.
3.
Olson
,
E. A.
,
Yu
,
M.
,
Efremov
,
E.
,
Zhang
,
M.
,
Zhang
,
Z.
, and
Allen
,
L. H.
, 2003, “
The Design and Operation of a MEMS Differential Scanning Nanocalorimeter for High-Speed Heat Capacity Measurements of Ultrathin Films
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
355
364
.
4.
King
,
W. P.
,
Kenny
,
T. W.
,
Goodson
,
K. E.
,
Cross
,
G. L. W.
,
Despont
,
M.
,
Dürig
,
U.
,
Rothuizen
,
H.
,
Binnig
,
G.
, and
Vettiger
,
P.
, 2001, “
Atomic Force Microscope Cantilevers for Combined Thermomechanical Data Writing and Reading
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
1300
1302
.
5.
Savin
,
A. M.
,
Prunnila
,
M.
,
Kivinen
,
P. P.
,
Pekola
,
J. P.
,
Ahopelto
,
J.
, and
Manninen
,
A. J.
, 2001, “
Efficient Electronic Cooling in Heavily Doped Silicon by Quasiparticle Tunneling
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
1471
1473
.
6.
Pescini
,
L.
,
Tilke
,
A.
,
Blick
,
R. H.
,
Lorenz
,
H.
,
Kotthaus
,
J. P.
,
Eberhardt
,
W.
, and
Kern
,
D.
, 1999, “
Suspending Highly Doped Silicon-on-Insulator Wires for Applications in Nanomechanics
,”
Nanotechnology
0957-4484,
10
, pp.
418
420
.
7.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
, 1997, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
0003-6951,
71
, pp.
1798
1800
.
8.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
, 1998, “
Temperature Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
30
36
.
9.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
, 2002, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
0021-8979,
91
, pp.
5079
5088
.
10.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Films With Thickness of Order 100nm
,”
Appl. Phys. Lett.
0003-6951,
74
, pp.
3005
3007
.
11.
Rim
,
K.
,
Koester
,
S.
,
Hargrove
,
M.
,
Chu
,
J.
,
Mooney
,
P. M.
,
Ott
,
J.
,
Kanarsky
,
T.
,
Ronsheim
,
P.
,
Ieong
,
M.
,
Grill
,
A.
, and
Wong
,
H.-S. P.
, 2001 “
Strained Si NMOSFETs for High Performance CMOS Technology
,”
Symposium on VLSI Technology Digest of Technical Papers
, Kyoto, Japan, pp.
59
60
.
12.
Hoyt
,
J. L.
,
Nayfeh
,
H. M.
,
Eguchi
,
S.
,
Aberg
,
I.
,
Xia
,
G.
,
Drake
,
T.
,
Fitzgerald
,
E. A.
, and
Antoniadis
,
D. A.
, 2002, “
Strained Silicon MOSFET Technology
,”
IEEE International Electron Devices Meeting
, San Francisco, CA, pp.
23
26
.
13.
Jenkins
,
K. A.
, and
Rim
,
K.
, 2002, “
Measurement of the Effect of Self-Heating in Strained-Silicon MOSFETs
,”
IEEE Electron Device Lett.
0741-3106,
23
, pp.
360
362
.
14.
Etessam-Yazdani
,
K.
, and
Asheghi
,
M.
, 2004, “
Ballistic Phonon Transport on Strained Si∕SiGe Nanostructures With an Application to Strained-Silicon Transistors
,”
IEEE ITherm Conference
, June 2004, Las Vegas, NV.
15.
Liu
,
W.
, and
Asheghi
,
M.
, 2004, “
Thermal Modeling of Self-Heating in Strained-Silicon MOSFETS
,”
IEEE ITherm Conference
, June 2004, Las Vegas, NV.
16.
Asheghi
,
M.
,
Behkam
,
B.
,
Yazdani
,
K.
,
Joshi
,
R.
, and
Goodson
,
K. E.
, 2002, “
Thermal Conductivity Model for Thin Silicon-on-Insulator Layers at High Temperatures
,” Presented at the
IEEE International SOI Conference Proceedings
, Oct. 7–10, Williamsburg, VA, pp.
51
52
.
17.
Asheghi
,
M.
,
Sverdrup
,
P.
, and
Goodson
,
K. E.
, 1999, “
Thermal Modeling of Thin-Film SOI Transistors
,”
IEEE International SOI Conference Proceedings
, Oct. 4–7, Rohnert Park, CA, pp.
28
29
.
18.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
2934
2936
.
19.
F Band temperature sensor: Lake shore: http://www.lakeshore.com/temp/sen/sdts.htmlhttp://www.lakeshore.com/temp/sen/sdts.html accuracy: ±20mK<10K; ±55mK (10Kto500K).
20.
Tai
,
Y. C.
,
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
, 1988, “
Thermal Conductivity of Heavily Doped Low Pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
Appl. Phys. Lett.
0003-6951,
63
, pp.
1442
1447
.
21.
Zhang
,
S
,
Yang
,
Y.
,
Sadeghipour
,
M. S.
, and
Asheghi
,
M
, 2003, “
Thermal Characterization of the 144nm GMR Layer Using Microfabricated Suspended Structures
,”
ASME Summer Heat Transfer Conference
, Paper no. HT2003-40270, July 21–23, Las Vegas, Nevada.
22.
Reifenberg
,
J.
,
England
,
Voss
,
R. J.
,
Rao
,
P.
,
Schmitt
,
W.
,
Yang
,
Y.
,
Liu
,
W.
,
Sadeghipour
,
S. M.
, and
Asheghi
,
M.
Thermal Conductivity Measurement of Thin Aluminum Layers Using Steady-State Joule Heating and Electrical Resistance Thermometry in Suspended Bridges
,”
ASME International Mechanical Engineering Congress & Exposition
, IMECE-42055, November 15–21, 2003, Washington, D. C.
23.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0031-899X,
132
, pp.
2461
2471
.
24.
Sondheimer
,
E. H.
, 1952, “
The Mean Free Path of Electrons in Metals
,”
Adv. Phys.
0001-8732,
1
, pp.
1
42
.
25.
Nishiguchi
,
N.
, 1996, “
Electron Scattering due to Confined and Extended Acoustic Phonons in a Quantum Wire
,”
Physica B
0921-4526,
58
, pp.
1494
1497
.
26.
Bannov
,
N.
,
Aristov
,
V.
, and
Mitin
,
V.
, 1995, “
Electron Relaxation Times due to the Deformation-Potential Interaction of Electrons With Confined Acoustic Phonons in a Free-Standing Quantum Well
,”
Phys. Rev. B
0163-1829,
51
, pp.
9930
9942
.
27.
Zou
,
J.
, and
Balandin
,
A.
, 2001, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
0021-8979,
89
, pp.
2932
2938
.
28.
Balandin
,
A.
, and
Wang
,
K.
, 1998, “
Significant Decrease of the Lattice Thermal Conductivity due to Phonon Confinement in a Free Standing Semiconductor Quantum Well
,”
Phys. Rev. B
0163-1829,
58
, pp.
1544
1549
.
29.
Liu
,
W.
, and
Asheghi
,
M.
, 2005, “
Phonon Confinement Effects in Silicon Film and Nanowire
,” in preparation.
30.
Holman
,
J. P.
, 1984,
Experimental Methods for Engineers
,
McGraw-Hill
, New York, pp.
50
57
.
You do not currently have access to this content.