Despite enormous progress in laser aided direct metal/material deposition (LADMD) process many issues concerning the adverse effects of process parameters on the stability of variety of properties and the integrity of microstructure have been reported. Comprehensive understanding of the transport phenomena and heat transfer analysis is essential to predict the thermally induced residual stresses and solidification microstructure in the deposited materials. Traditional solidification theories as they apply to castings or related processes, assume either no mass diffusion in the solid (Gulliver-Scheil) or complete diffusion in the solid (equilibrium lever rule) in a fixed arm space. These are inappropriate in high energy beam processes involving significantly high cooling rates. The focus of this paper is the solute transport in multi-pass LADMD process, especially the coupling of the process scale transport with the transport at the local scale of the solid-liquid interface. This requires modeling of solute redistribution at the scale of the secondary arm spacing in the dendritic mushy region. This paper is an attempt toward a methodology of finite element analysis for the prediction of solidification microstructure and macroscopic as well as microscopic thermal stresses. The computer simulation is based on the metallo-thermo-mechanical theory for uncoupled temperature, solidification, phase transformation, and stress/strain fields. The importance of considering phase transformation effects is also verified through the comparison of the magnitudes of residual stresses with and without the inclusion of phase transformation kinetics. The simulation has been carried out for H13 tool steel deposited on a mild steel substrate.

1.
Mazumder
,
J.
,
Choi
,
J.
,
Nagarathnam
,
K.
,
Koch
,
J.
, and
Hetzner
,
D.
, 1997, “
The Direct Metal Deposition of H13 Tool Steel for 3-D Components
,”
JOM
1047-4838,
49
(
5
), pp.
55
60
.
2.
Choi
,
J.
, and
Chang
,
Y.
, 2005, “
Characteristics of Laser Aided Direct Metal Deposition Process for Tool Steel
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
4-5
), pp.
597
607
.
3.
Klingbeil
,
N. W.
,
Beuth
,
J. L.
,
Chin
,
R. K.
, and
Amon
,
C. H.
, 2002, “
Residual Stress-Induced Warping in Direct Metal Solid Freeform Fabrication
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
57
77
.
4.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
, 2001, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng., A
0921-5093,
317
, pp.
59
64
.
5.
Inoue
,
T.
, 2002, “
Metallo-Thermo-Mechanics- Application to Quenching
,”
Handbook of Residual Stress and Deformation of Steel
,
ASM International
,
Materials Park
, OH, pp.
296
311
.
6.
Inoue
,
T.
,
Ju
,
D. Y.
, and
Arimoto
,
K.
, 1992, “
Metallo-Thermo-Mechanical Simulation of Quenching Process – Theory and Implementation of Computer Code – Hearts
,”
Proceedings of the First International Conference on Quenching & Control of Distortion
,
Chicago, IL
, 22–25 September, pp.
205
212
.
7.
Kahlen
,
F.-J.
, and
Kar
,
A.
, 2001, “
Residual Stresses in Laser-Deposited Metal Parts
,”
J. Laser Appl.
1042-346X,
13
(
12
), pp.
60
69
.
8.
Dai
,
K.
, and
Shaw
,
L.
, 2001, “
Thermal and Stress Modeling of Multi-Material Laser Processing
,”
Acta Mater.
1359-6454,
49
, pp.
4171
4181
.
9.
Bokota
,
A.
, and
Iskierka
,
S.
, 1996, “
Effect of Phase Transformation on Stress States in Surface Layer Laser Hardened Carbon Steel
,”
ISIJ Int.
0915-1559,
36
(
11
), pp.
1383
1391
.
10.
Das
,
S.
,
Upadhya
,
G.
, and
Chandra
,
U.
, 1992, “
Prediction of Macro-and Micro-Residual Stress in Quenching using Phase Transformation Kinetics
,”
Proceedings of the First International Conference on Quenching & Control of Distortion
,
ASM International
,
Chicago, IL
, pp.
229
234
.
11.
Kirkaldy
,
J. S.
, and
Venugopalan
,
D.
, 1983, “
Prediction of Microstructure and Hardenability in Low Alloy Steels
,”
Proceedings of the International Conference on Phase Transformations in Ferrous Alloys
, A publication of The Metallurgical Society of AIME, October 4–6, Philadelphia, PA, pp.
125
148
.
12.
Watt
,
D. F.
,
Coon
,
L.
,
Bibby
,
M.
,
Goldak
,
J.
, and
Henwood
,
C.
, 1988, “
An Algorithm for Modeling Microstructural Development in Weld Heat-Affected Zones (Part A) Reaction Kinetics
,”
Acta Metall.
0001-6160,
36
(
11
), pp.
3029
3035
.
13.
Ashby
,
M. F.
, and
Easterling
,
K. E.
, 1982, “
A First Report on Diagrams for Grain Growth in Welds
,”
Acta Metall.
0001-6160,
30
, pp.
1969
1978
.
14.
Oddy
,
A. S.
,
Goldak
,
J. A.
, and
McDill
,
J. M. J.
, 1989, “
Transformation Effects in the 3D Finite Element Analysis of Welds
,”
Proceedings of the Second International Conference on Trends in Welding Research
,
ASM International
,
Gatlinburg, TN
, May
15
19
.
15.
Jarvstrat
,
N.
, and
Sjostrom
,
S.
, 1993, “
Current Status of TRAST; A Material Model Subroutine System for the Calculation of Quench Stresses in Steel
,”
ABAQUS User's Conference Proceedings
.
16.
Denis
,
S.
, 1996, “
Considering Stress-Phase Transformation Interactions in the Calculation of Heat Treatment Residual Stresses
,”
J. Phys. IV
1155-4339,
6
, pp.
C1
159–C1
174
.
17.
Roelens
,
J. B.
,
Maltrud
,
F.
, and
Lu
,
J.
, 1994, “
Determination of Residual Stresses in Submerged Arc Multi-Pass Welds by means of Numerical Simulation and Comparison with Experimental Results
,”
Weld. World
0043-2288,
33
(
3
), pp.
152
159
.
18.
Choi
,
J.
, and
Mazumder
,
J.
, 2002, “
Numerical and Experimental Analysis for Solidification and Residual Stresses in GMAW process for AISI 304 Stainless Steel
,”
J. Mater. Sci.
0022-2461,
37
, pp.
2143
2158
.
19.
Tekriwal
,
P.
, and
Mazumder
,
J.
, July 1991, “
Transient and Residual Thermal Strain-Stress Analysis of GMAW
,”
J. Eng. Mater. Technol.
0094-4289,
113
, pp.
336
343
.
20.
Kurz
,
W.
, and
Fisher
,
J.
, 1990,
Fundamentals of Solidification
,
Trans Tech Aedermannsdorf
, Switzerland.
21.
Wang
,
G. X.
, and
Prasad
,
V.
, 2000, “
Microscale Heat and Mass Transfer and Non-equilibrium Phase Change in Rapid Solidification
,”
Mater. Sci. Eng., A
0921-5093,
292
, pp.
142
148
.
22.
Trivedi
,
R.
, and
Kurz
,
W.
, 1994, “
Solidification Microstructures: A Conceptual Approach
,”
Phys. Met. Metallogr.
0031-918X,
42
(
1
), pp.
15
23
.
23.
Ode
,
M.
,
Kim
,
S. G.
,
Kim
,
W. T.
, and
Suzuki
,
T.
, 2001, “
Numerical Prediction of the Secondary Dendrite Arm Spacing using a Phase-Field Model
,”
ISIJ Int.
0915-1559,
41
(
4
), pp.
345
349
.
24.
Aziz
,
M. J.
, 1982, “
Model for Solute Redistribution during Rapid Solidification
,”
J. Appl. Phys.
0021-8979,
53
(
2
), pp.
1158
1168
.
25.
Calrslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
, Oxford.
26.
Ghosh
,
S.
, and
Choi
,
J.
, 2005, “
Three-Dimensional Transient Finite Element Analysis for Residual Stresses in the Laser Aided Direct Metal/Material Deposition Process
,”
J. Laser Appl.
1042-346X,
17
(
3
), pp.
144
158
.
27.
ABAQUS/Standard User's Manual and Keywords Manual, version 6.4.
28.
Touloukian
,
Y. S.
, and
Ho
,
C. Y.
, 1970,
Thermo Physical Properties of Matter-The TPRC Data Series by Purdue University
,
IFI/Plenum Data Corp.
, New York.
29.
Ghosh
,
S.
, 2003, “
Three-Dimensional Transient Residual Stress FE Analysis for Single and Double Pass Laser Aided Direct Metal/Material Deposition Process
,” University of Missouri- Rolla, M.S. thesis.
30.
Gordon
,
R.
, and
Cobonque
,
J.
, 1961, “
Heat Transfer between a Flat Plate and Jets of Air Impinging on it
,”
International Conference on Heat Transfer
, Part II,
pp.
454
460
.
31.
Steen
,
W. M.
, 1976, “
The Printing of Laser Generated Heat Images in Cobalt Oxide on Glass Substrates
,” Ph.D. thesis, Imperial College, London.
32.
Boyer
,
H. E.
, and
Gray
,
A. G.
, 1977, “
Atlas of Isothermal Transformation and Cooling Transformation Diagrams
,”
American Society for Metals
,
Metals Park, OH.
33.
Pfoetsch
, and
Ruud
, Penn State Univ., Univ. Park, Pennsylvania, ICDD Grant-in-Aid, 1982 and 1984.
34.
Choi
,
J.
, and
Mazumder
,
J.
, 1994, “
Non-Equilibrium Synthesis of Fe-Cr-C-W alloy by Laser Cladding
,”
J. Mater. Sci.
0022-2461,
29
, pp.
4460
4476
.
35.
Choi
,
J.
,
Choudhuri
,
S. K.
, and
Mazumder
,
J.
, 2000, “
Role of Preheating and Specific Energy Input on the Evolution of Microstructure and Wear Properties of Laser Clad Fe-Cr-C-W Alloys
,”
J. Mater. Sci.
0022-2461,
35
, pp.
3213
3219
.
You do not currently have access to this content.