Abstract
The multiquadric collocation method is a meshless method that uses multiquadrics as its basis function. Problems of nonlinear time-dependent heat conduction in materials having temperature-dependent thermal properties are solved by using this method and the Kirchhoff transformation. Variable transformation is simplified by assuming that thermal properties are piecewise linear functions of temperature. The resulting nonlinear equation is solved by an iterative scheme. The multiquadric collocation method is tested by a heat conduction problem for which the exact solution is known. Results indicate satisfactory performance of the method.
1.
Hardy
, R. L.
, 1971, “Multiquadric Equations of Topography and Other Irregular Surfaces
,” J. Geophys. Res.
0148-0227, 176
, pp. 1905
–1915
.2.
Kansa
, E. J.
, 1990, “Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid Dynamics II
,” Comput. Math. Appl.
0898-1221, 19
, pp. 147
–161
.3.
Leitao
, V. M. A.
, 2001, “A Meshless Method for Kirchhoff Plate Bending Problem
,” Int. J. Numer. Methods Eng.
0029-5981, 52
, pp. 1107
–1130
.4.
Power
, H.
, and Barraco
, V.
, 2002, “A Comparison Analysis Between Unsymmetric and Symmertic Radial Basis Function Collocation Methods for the Numerical Solution of Partial Differential Equations
,” Comput. Math. Appl.
0898-1221, 43
, pp. 551
–583
.5.
Li
, J.
, Cheng
, A. H. D.
, and Chen
, C. S.
, 2003, “A Comparison of Efficiency and Error Convergence of Multiquadric Collocation Method With Finite Element Method
,” Eng. Anal. Boundary Elem.
0955-7997, 26
, pp. 205
–255
.6.
Chantasiriwan
, S.
, 2004, “Cartesian Grid Methods Using Radial Basis Functions for Solving Poisson, Helmholtz, and Diffusion–Convection Equations
,” Eng. Anal. Boundary Elem.
0955-7997, 28
, pp. 1417
–1425
.7.
Zerroukat
, M.
, Power
, H.
, and Chen
, C. S.
, 1998, “A Numerical Method for Heat Transfer Problems Using Collocation and Radial Basis Functions
,” Int. J. Numer. Methods Eng.
0029-5981, 42
, pp. 1263
–1278
.8.
Wong
, A. S. M.
, Hon
, Y. C.
, Li
, T. S.
, Chung
, S. L.
, and Kansa
, E. J.
, 1999, “Multizone Decomposition for Simulation of Time-Dependent Problems Using the Multiquadric Scheme
,” Comput. Math. Appl.
0898-1221, 37
, pp. 23
–43
.9.
Ferreira
, A. J. M.
, Martins
, P. A. L. S.
, and Roque
, C. M. C.
, 2005, “Solving Time-Dependent Engineering Problems With Multiquadrics
,” J. Sound Vib.
0022-460X, 280
, pp. 595
–610
.10.
Sarra
, S. A.
, 2005, “Adaptive Radial Basis Function Methods for Time Dependent Partial Differential Equations
,” Appl. Numer. Math.
0168-9274, 54
, pp. 79
–94
.11.
Hon
, Y. C.
, and Mao
, X. Z.
, 1998, “An Efficient Numerical Scheme for Burgers’ Equation
,” Appl. Math. Comput.
0096-3003, 95
, pp. 37
–50
.12.
Incropera
, F. P.
, and DeWitt
, D. P.
, 1996, Introduction to Heat Transfer
, Wiley
, New York.13.
Carlson
, R. E.
, and Foley
, T. A.
, 1991, “The Parameters R2 in Multiquadric Interpolation
,” Comput. Math. Appl.
0898-1221, 21
, pp. 29
–42
.14.
Kansa
, E. J.
, and Carlson
, R. E.
, 1992, “Improved Accuracy of Multiquadric Interpolation Using Variable Shape Parameters
,” Comput. Math. Appl.
0898-1221, 24
, pp. 99
–120
.15.
Fasshauer
, G. E.
, 2002, “Newton Iteration With Multiquadrics for the Solution of Nonlinear PDEs
,” Comput. Math. Appl.
0898-1221, 43
, pp. 423
–438
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.