An inverse solution scheme based on the conjugate gradient method with the minimization of the object function is presented for estimating the unknown wall heat flux of conjugated forced convection flows between two corotating disks from temperature measurements acquired within the flow field. The validity of the proposed approach is demonstrated via the estimation of three time- and space-dependent heat flux profiles. A good agreement is observed between the estimated results and the exact solution in every case. In general, the accuracy of the estimated results is found to improve as the temperature sensors are moved closer to the unknown boundary surface and the error in the measured temperature data is reduced.

1.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
C. R.
, 1985,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
2.
Alifanov
,
O. M.
, 1994,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
New York
.
3.
Kurpisz
,
K.
, and
Nowak
,
A. J.
, 1995,
Inverse Thermal Problems
,
Computational Mechanics
,
Southampton
.
4.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer
,
Taylor & Francis
,
New York
.
5.
Moutsoglou
,
A.
, 1990, “
Solution of an Elliptic Inverse Convection Problem Using a Whole Domain Regularization Technique
,”
J. Thermophys. Heat Transfer
0887-8722,
4
(
3
), pp.
341
349
.
6.
Colaco
,
M. J.
, and
Orlande
,
H. R. B.
, 2001, “
Inverse Forced Convection Problem of Simultaneous Estimation of Two Boundary Heat Fluxes in Irregularly Shaped Channels
,”
Numer. Heat Transfer, Part A
1040-7782,
39
(
7
), pp.
737
760
.
7.
Huang
,
C. H.
, and
Ozisik
,
M. N.
, 1992, “
Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through a Parallel Plate Duct
,”
Numer. Heat Transfer, Part A
1040-7782,
21
(
1
), pp.
55
70
.
8.
Liu
,
F. B.
, and
Ozisik
,
M. N.
, 1996, “
Inverse Analysis of Transient Turbulent Forced Convection Inside Parallel−Plate Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
12
), pp.
2615
2618
.
9.
Raghunath
,
R.
, 1993, “
Determining Entrance Conditions From Downstream Measurements
,”
Int. Commun. Heat Mass Transfer
0735-1933,
20
, pp.
173
183
.
10.
Bokar
,
J. C.
, and
Ozisik
,
M. N.
, 1995, “
An Inverse Analysis for Estimating the Time-Varying Inlet Temperature in Laminar Flow Inside a Parallel Plate Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
39
45
.
11.
Liu
,
F. B.
, and
Ozisik
,
M. N.
, 1996, “
Estimation of Inlet Temperature Profile in Laminar Duct Flow
,”
Inverse Probl. Eng.
,
3
, pp.
131
143
. 1068-2767
12.
Machado
,
H. A.
, and
Orlande
,
H. R. B.
, 1997, “
Inverse Analysis for Estimating the Timewise and Spacewise Variation of the Heat Flux in a Parallel Plate Channel
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
7
, pp.
696
710
.
13.
Park
,
H. M.
, and
Lee
,
J. H.
, 1998, “
A Method of Solving Inverse Convection Problem by Means of Mode Reduction
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
1731
1744
.
14.
Fic
,
A.
, 2004, “
A Study of the Steady-State Inverse Heat Transfer Problem of Estimating the Boundary Velocity
,”
Numer. Heat Transfer, Part A
1040-7782,
45
(
2
), pp.
153
170
.
15.
Li
,
H. Y.
, and
Yan
,
W. M.
, 1999, “
Estimation of Space and Time Dependent Wall Heat Flux in an Inverse Convection Problem
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
3
), pp.
394
396
.
16.
Li
,
H. Y.
, and
Yan
,
W. M.
, 2003, “
Identification of Wall Heat Flux for Turbulent Forced Convection by Inverse Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1041
1048
.
17.
Li
,
H. Y.
, and
Yan
,
W. M.
, 2000, “
Inverse Convection Problem for Determining Wall Heat Flux in Annular Duct Flow
,”
ASME J. Heat Transfer
0022-1481,
122
(
3
), pp.
460
464
.
18.
Chen
,
C. K.
,
Wu
,
L. W.
, and
Yang
,
Y. T.
, 2006, “
Comparison of Whole-Domain and Sequential Algorithms for Function Specification Method in the Inverse Heat Transfer Problem of Laminar Convective Pipe Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
50
(
10
), pp.
927
947
.
19.
Chen
,
C. K.
,
Wu
,
L. W.
, and
Yang
,
Y. T.
, 2008, “
Proposed Modification to Whole Domain Function Specification Method to Improve Accuracy of Its Estimations
,”
ASME J. Heat Transfer
0022-1481,
130
, pp.
051702
.
20.
Attia
,
H. A.
, 2003, “
Unsteady Flow of a Non-Newtonian Fluid Above a Rotating Disk With Heat Transfer
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2695
2700
. 0017-9310
21.
Seghir-Ouali
,
S.
,
Saury
,
D.
,
Harmand
,
S.
,
Phillipart
,
O.
, and
Laloy
,
D.
, 2006, “
Convective Heat Transfer Inside a Rotating Cylinder With an Axial Air Flow
,”
Int. J. Therm. Sci.
,
45
, pp.
1166
1178
. 1290-0729
22.
Siddquiddi
,
A. M.
,
Rana
,
M. A.
, and
Ahmed
,
N.
, 2008, “
Effects of Hall Current and Heat Transfer on MHD Flow of a Burger’s Fluid Due to a Pull of Eccentric Rotating Disks
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
1554
1570
. 1007-5704
23.
Aus der Wiesche
,
S.
, 2007, “
Heat Transfer From a Rotating Disk in a Parallel Air Crossflow
,”
Int. J. Therm. Sci.
,
46
, pp.
745
754
. 1290-0729
24.
Lee
,
K. T.
, and
Yan
,
W. M.
, 1994, “
Numerical Study of Transient Conjugated Mixed Convection in a Vertical Pipe
,”
Numer. Heat Transfer
,
26
, pp.
161
179
. 1040-7782
25.
Yan
,
W. M.
, and
Lee
,
K. T.
, 1995, “
Unsteady Conjugated Mixed Convection in a Vertical Channel
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
234
238
.
26.
Yan
,
W. M.
, and
Lee
,
K. T.
, 1996, “
Unsteady Conjugated Mixed Convection Flow and Heat Transfer Between Two Co-Rotating Discs
,”
Int. J. Heat Mass Transfer
,
40
, pp.
2975
2988
. 0017-9310
27.
Luna
,
N.
,
Méndez
,
F.
, and
Mar
,
E.
, 2003, “
Transient Analysis of the Conjugated Heat Transfer in Circular Ducts With a Power Law Fluid
,”
J. Non-Newtonian Fluid Mech.
,
111
, pp.
69
85
. 0377-0257
28.
Indinger
,
T.
, and
Shevchuk
,
I. V.
, 2004, “
Transient Laminar Conjugate Heat Transfer of a Rotating Disk: Theory and Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3577
3581
. 0017-9310
29.
Ozar
,
B.
,
Cetegen
,
B. M.
, and
Faghri
,
A.
, 2004, “
Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
184
192
.
30.
Basu
,
S.
, and
Cetegen
,
B. M.
, 2006, “
Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk by the Integral Method
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
217
225
.
31.
Basu
,
S.
, and
Cetegen
,
B. M.
, 2007, “
Effect of Hydraulic Jump on Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk Analyzed by Integral Method
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
657
663
.
32.
Shevchuk
,
I. V.
, 2006, “
Unsteady Conjugate Laminar Heat Transfer of a Rotating Non-Uniformly Heated Disk: Application to the Transient Experimental Technique
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3530
3537
. 0017-9310
33.
Lallave
,
J. C.
,
Rahman
,
M. M.
, and
Kumar
,
A.
, 2007, “
Numerical Analysis of Heat Transfer on a Rotating Disk Surface Under Confined Liquid Jet Impingement
,”
Int. J. Heat Fluid Flow
,
28
, pp.
720
734
. 0142-727X
34.
Sladek
,
J.
,
Sladek
,
V.
, and
Hon
,
Y. C.
, 2006, “
Inverse Heat Conduction Problems by Meshless Local Petrov–Galerkin Method
,”
Eng. Anal. Boundary Elem.
,
30
, pp.
250
261
. 0955-7997
35.
Yan
,
W. M.
,
Tsay
,
Y. L.
, and
Lin
,
T. F.
, 1989, “
Transient Conjugated Heat Transfer in Laminar Pipe Flows
,”
Int. J. Heat Mass Transfer
,
32
, pp.
775
777
. 0017-9310
36.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
37.
Hestenes
,
M. R.
, 1980,
Conjugate Direction Methods in Optimization
,
Springer-Verlag
,
New York
, Chap. 4.
38.
Alifanov
,
O. M.
, 1974, “
Solution of an Inverse Problem of Heat Conduction by Iteration Methods
,”
J. Eng. Phys.
0022-0841,
26
(
4
), pp.
471
476
.
39.
1987, User’s Manual, Math Library Version 1.0, IMSL Library Edition 10.0, IMSL, Houston, TX.
You do not currently have access to this content.