A three-dimensional model is used to predict the power output and internal temperature distribution of a small proton exchange membrane fuel cell stack. Of particular interest is the influence of nonuniform stack compression on thermal conditions inside the fuel cell. A dimensionless membrane isothermality is correlated with a dimensionless compressive load distribution, suggesting that similar relationships may be developed for other fuel cell geometries. Fuel cell performance, in terms of minimizing temperature variations inside the device, can be enhanced by application of nonuniform stack compression.

1.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3891
3920
.
2.
Ihonen
,
J.
,
Mikkola
,
M.
, and
Lindbergh
,
G.
, 2004, “
Flooding of Gas Diffusion Backing in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
(
8
), pp.
A1152
A1161
.
3.
Mishra
,
V.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2004, “
Measurement and Prediction of Electrical Contact Resistance Between Gas Diffusion Layers and Bipolar Plate for Applications to PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
1
, pp.
2
9
.
4.
Khandelwal
,
M.
, and
Mench
,
M. M.
, 2006, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
0378-7753,
161
, pp.
1106
1115
.
5.
Barbir
,
F.
,
Braun
,
J.
, and
Neutzler
,
J.
, 1999, “
Properties of Molded Graphite Bi-Polar Plates for PEM Fuel Cell Stacks
,”
J. New Mater. Electrochem. Syst.
1480-2422,
2
, pp.
197
200
.
6.
Mathias
,
M. F.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
, 2003, “
Diffusion Media Materials and Characterisation
,”
Handbook of Fuel Cells: Fundamentals, Technology and Applications
, Vol.
3
,
Wiley
,
New York
, pp.
517
537
.
7.
Birgersson
,
E.
,
Noponen
,
M.
, and
Vynnycky
,
M.
, 2005, “
Analysis of a Two-Phase Non-Isothermal Model for a PEFC
,”
J. Electrochem. Soc.
0013-4651,
152
(
5
), pp.
A1021
A1034
.
8.
Ge
,
J.
,
Higier
,
A.
, and
Liu
,
H.
, 2006, “
Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance
,”
J. Power Sources
0378-7753,
159
, pp.
922
927
.
9.
Fekrazad
,
N.
, 2007, “
The Effect of Compressive Load on PEM Fuel Cell Stack Performance and Behavior
,” Ph.D. thesis, University of Connecticut, Storrs, CT.
10.
Fekrazad
,
N.
, and
Bergman
,
T. L.
, 2007, “
The Effect of Compressive Load on Proton Exchange Membrane Fuel Cell Stack Performance and Behavior
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1004
1013
.
11.
Stanic
,
V.
, and
Hoberecht
,
M.
, 2004, “
Mechanism of Pin-Hole Formation in Membrane Electrode Assemblies for PEM Fuel Cells
,”
Proceedings of the Fourth International Symposium on Proton Conducting Membrane Fuel Cells
,
J.
VanZee
,
S. R.
Narayanan
, and
M.
Murthy
, eds.,
The Electrochemical Society
,
Pennington, NJ
, Abstract No. W1-1891.
12.
Liu
,
D.
, and
Case
,
S.
, 2006, “
Durability Study of Proton Exchange Fuel Cells Under Dynamic Testing Conditions With Cyclic Current Profile
,”
J. Power Sources
0378-7753,
162
(
1
), pp.
521
531
.
13.
Uan-Zo-Li
,
J. T.
, 2001, “
The Effects of Structure, Humidity and Aging on the Mechanical Properties of Polymeric Ionomers for Fuel Cell Applications
,” M.S. thesis, The Virginia Polytechnic Institute and State University, Blacksburg, VA.
14.
Barbir
,
F.
, 2005,
PEM Fuel Cells: Theory and Practice
,
Elsevier
,
New York
, Chaps. 3 and 5.
15.
Um
,
S.
,
Wang
,
C.-Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4485
4493
.
16.
Fekrazad
,
N.
, and
Bergman
,
T. L.
, 2007, “
Effect of Non-Uniform Clamping Pressure on PEM Fuel Cell Stack Performance
,”
Proceedings of the 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference
,
K.
Okazaki
et al.
, eds.,
ASME
,
New York
, Paper No. HT2007-32076.
You do not currently have access to this content.