Micro-Raman thermometry has been demonstrated to be a feasible technique for obtaining surface temperatures with micron-scale spatial resolution for microelectronic and microelectromechanical systems (MEMSs). However, the intensity of the Raman signal emerging from the probed device is very low and imposes a requirement of prolonged data collection times in order to obtain reliable temperature information. This characteristic currently limits Raman thermometry to steady-state conditions and thereby prevents temperature measurements of transient and fast time-scale events. In this paper, we discuss the extension of the micro-Raman thermometry diagnostic technique to obtain transient temperature measurements on microelectromechanical devices with 100μs temporal resolution. Through the use of a phase-locked technique we are able to obtain temperature measurements on electrically powered MEMS actuators powered with a periodic signal. Furthermore, we demonstrate a way of obtaining reliable temperature measurements on micron-scale devices that undergo mechanical movement during the device operation.

1.
Trigg
,
A.
, 2003, “
Applications of Infrared Microscopy to IC and MEMS Packaging
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
26
, pp.
232
238
.
2.
Zhang
,
Z. M.
, 2000, “
Surface Temperature Measurements Using Optical Techniques
,”
Annu. Rev. Heat Transfer
1049-0787,
11
, pp.
351
411
.
3.
Abel
,
M. R.
,
Graham
,
S.
,
Serrano
,
J. R.
,
Kearney
,
S. P.
, and
Phinney
,
L. M.
, 2007, “
Raman Thermometry of Polysilicon Microelectromechanical Systems in the Presence of an Evolving Stress
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
329
334
.
4.
Beechem
,
T.
,
Graham
,
S.
,
Kearney
,
S. P.
,
Phinney
,
L. M.
, and
Serrano
,
J. R.
, 2007, “
Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices Using Micro-Raman Spectroscopy
,”
Rev. Sci. Instrum.
0034-6748,
78
, p.
061301
.
5.
Kuball
,
M.
,
Reidel
,
G. J.
,
Pomeroy
,
J. W.
,
Sarua
,
A.
,
Uren
,
M. J.
,
Martin
,
T.
,
Milton
,
K. P.
,
Maclean
,
J. O.
, and
Wallis
,
D. J.
, 2007, “
Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Thermometry
,”
IEEE Electron Device Lett.
0741-3106,
28
, pp.
86
89
.
6.
Serrano
,
J. R.
, and
Phinney
,
L. M.
, 2007, “
Micro-Raman Thermometry of Laser Heated Surfaces
,”
IPACK2007-33571: Proceedings of the InterPACK 2007
, Vancouver, BC, Canada, July 8–12, pp.
1
7
.
7.
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
Kearney
,
S. P.
, 2006, “
Micro-Raman Thermometry of Thermal Flexure Actuators
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1128
1134
.
8.
Kearney
,
S. P.
,
Phinney
,
L. M.
, and
Baker
,
M. S.
, 2006, “
Spatially Resolved Temperature Mapping of Electrothermal Actuators by Surface Raman Scattering
,”
J. Microelectromech. Syst.
1057-7157,
15
, pp.
314
321
.
9.
Abel
,
M. R.
,
Wright
,
T. L.
,
Sunden
,
E. O.
,
Graham
,
S.
,
King
,
W. P.
, and
Lance
,
M. J.
, 2005, “
Thermal Metrology of Silicon Microstructures Using Raman Microscopy
,”
Proceedings of the Semi-Therm Symposium
, San Jose, CA, Mar. 15–17, pp.
235
242
.
10.
Kuball
,
M.
,
Hayes
,
J. M.
,
Uren
,
M. J.
,
Martin
,
T.
,
Birbeck
,
J. C. H.
, and
Balmer
,
R. B. T. H.
, 2002, “
Measurements of Temperature in Active High-Power AlGaN/GaN HFETs Using Raman Spectroscopy
,”
IEEE Electron Device Lett.
0741-3106,
23
, pp.
7
9
.
11.
Ostermeir
,
R.
,
Brunner
,
K.
,
Absteiter
,
G.
, and
Weber
,
W.
, 1992, “
Temperature Distribution in Si-MOSFETs Studied by Micro Raman Spectroscopy
,”
IEEE Trans. Electron Devices
0018-9383,
39
, pp.
858
863
.
12.
Sniegowski
,
J. J.
, and
de Boer
,
M. P.
, 2000, “
IC-Compatible Polysilicon Surface Micromachining
,”
Annu. Rev. Mater. Sci.
0084-6600,
30
, pp.
299
333
.
13.
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
Brooks
,
C. F.
, 2005, “
Laser-Induced Damage of Polycrystalline Silicon Optically Powered MEMS Actuators
,”
IPACK2005-73322: Proceedings of the InterPACK’05
, San Francisco, CA, July 17–22, pp.
1
6
.
14.
Balkanski
,
M.
,
Wallis
,
R. F.
, and
Haro
,
E.
, 1983, “
Anharmonic Effects in Light Scattering Due to Optical Phonons in Silicon
,”
Phys. Rev. B
0163-1829,
28
, pp.
1928
1934
.
15.
Tsu
,
R.
, and
Hernandez
,
J. G.
, 1982, “
Temperature Dependence of Silicon Raman Lines
,”
Appl. Phys. Lett.
0003-6951,
41
, pp.
1016
1018
.
16.
Lide
,
D. R.
, 2008,
CRC Handbook of Chemistry and Physics
, 88th ed.,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.