A nonequilibrium thermal model is developed to predict the through-thickness transient temperature variation in organic composites subjected to intensive heating. In addition to heat conduction, the model incorporates four important mechanisms: rate-dependent pyrolysis, pyrolysis by-product outgassing, irradiance-dependent convection heat loss, and radiation heat lose. Both the shape of the gas flow channel and the gas addition velocity from the channel wall are evaluated based on the decomposition reaction rate. The through-thickness temperature transients, the continually changing gas channel, and the pressure distribution in the decomposition gas are obtained and discussed.

1.
Agarwal
,
B. D.
, and
Broutman
,
L. J.
, 1990,
Analysis and Performance of Fiber Composites
, 2nd ed.,
Wiley
,
New York
.
2.
dell’Erba
,
M.
,
Galantucci
,
L. M.
, and
Miglietta
,
S.
, 1992, “
An Experimental Study on Laser Drilling and Cutting of Composite Materials for the Aerospace Industry Using Excimer and CO2 Sources
,”
Compos. Manuf.
0956-7143,
3
(
1
), pp.
14
19
.
3.
Reed
,
H. E.
, and
Rice
,
M. H.
, 1993, “
Failure of Solid Rocket Engines due to Laser Radiation Exposure
,” Cubed Report No. SSS-DFR-93–14222.
4.
Chen
,
J. K.
,
Perea
,
A.
, and
Allahdadi
,
F. A.
, 1995, “
A Study of Laser/Composite Material Interactions
,”
Compos. Sci. Technol.
0266-3538,
54
, pp.
35
44
.
5.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
, 2007, “
Numerical Simulation of Compressible Gas Flow and Heat Transfer in a Microchannel Surrounded by Solid Media
,”
Int. J. Heat Fluid Flow
0142-727X,
28
(
6
), pp.
1484
1491
.
6.
Smith
,
D. E.
,
Zhang
,
Y.
, and
Chen
,
J. K.
, 2006,
HELVAMP: Laser/Composite Interaction Research Project
, Final Technical Report Submitted to Air Force Research Laboratory/Ball Aerospace.
7.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow in Micro-Channels
,”
J. Fluid Mech.
0022-1120,
284
, pp.
257
274
.
8.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
9.
Karki
,
K. C.
, and
Patankar
,
S. V.
, 1989, “
Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations
,”
AIAA J.
0001-1452,
27
(
9
), pp.
1167
1174
.
10.
Demirdzic
,
I.
,
Lilek
,
Z.
, and
Peric
,
M.
, 1993, “
A Collocated Finite Volume Method for Predicting Flows at All Speeds
,”
Int. J. Numer. Methods Fluids
0271-2091,
16
, pp.
1029
1050
.
11.
Rincon
,
J.
, and
Elder
,
R.
, 1997, “
A High-Resolution Pressure-Based Method for Compressible Flows
,”
Comput. Fluids
0045-7930,
26
(
3
), pp.
217
231
.
12.
Date
,
A. W.
, 1998, “
Solution of Navier-Stokes Equations on Nonstaggered Grid at All Speeds
,”
Numer. Heat Transfer, Part B
1040-7790,
33
, pp.
451
467
.
13.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
(
11
), pp.
1525
1532
.
14.
Eiseman
,
P. R.
, 1985, “
Grid Generation for Fluid Mechanics Computations
,”
Annu. Rev. Fluid Mech.
0066-4189,
17
, pp.
487
522
.
You do not currently have access to this content.