Abstract

The pulsation of film cooling jets in turbines is driven by the near hole pressure fluctuation caused by the deterministic interaction of stator/rotor blade rows. Jet pulsation is characterized by the coolant near hole reduced frequency Ωc and the pulsation amplitude coefficient Ψ. The fluctuation of the near hole pressure is simulated by setting a time-varying signal of static pressure for the outlet boundary condition of a film-cooled flat plate configuration. It is observed that the fluctuation of the near hole pressure influences the blowing ratio, hence the thermal protection downstream of the injection site. For a low mean blowing ratio (BR¯=0.75), low-medium pulsation frequencies (Ωc0.10) are found to be slightly detrimental to the thermal protection versus a steady injection. On the contrary, for high pulsation frequencies (Ωc0.17), the thermal protection becomes better due to periodic jet disintegration into the wall surface caused by a higher level of transverse kinetic energy of the jet pulse. In addition, the overlapping of jet pulses appears to help the constant temporal spreading of coolant over the wall surface. For a higher mean blowing ratio (BR¯=1.25), jet pulsation enhances lift-off so that the thermal protection is, in general, worse compared to a steady injection. Overall, the range of jet pulsation presented in this study affects moderately the thermal protection of the downstream surface.

1.
Dunn
,
M. G.
, 1990, “
Phase and Time Resolved Measurements on the Blade of a Full Scale Rotating Turbine
,”
ASME J. Turbomach.
0889-504X,
112
(
3
), pp.
531
538
.
2.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
63
70
.
3.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
, 1997, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
214
221
.
4.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2006, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part I: Experimental Approach
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021015
.
5.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2006, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part II: Experimental Results
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021016
.
6.
Bons
,
J. P.
,
Rivir
,
R. B.
,
MacArthur
,
C. D.
, and
Pestian
,
D. J.
, 1995, “
The Effects of Unsteadiness on Film Cooling Effectiveness
,”
Proceedings of the 33rd AIAA Aerospace Scences Meeting
, Reno, NV, Paper No. AIAA 95-0306.
7.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
, 1996, “
Bulk Flow Pulsations and Film Cooling—I. Injectant Behavior
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
11
), pp.
2271
2282
.
8.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
, 1996, “
Bulk Flow Pulsations and Film Cooling—II. Flow Structure and Film Effectiveness
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
11
), pp.
2283
2292
.
9.
Bell
,
C. M.
,
Ligrani
,
P. M.
,
Hull
,
W. A.
, and
Norton
,
C. M.
, 1999, “
Film Cooling Subject to Bulk Flow Pulsations: Effects of Blowing Ratio, Freestream Velocity, and Pulsation Frequency
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
4333
4344
.
10.
Seo
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
, 1998, “
The Effect of Injection Hole Length on Film Cooling With Bulk Flow Pulsations
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3515
3528
.
11.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
, 2006, “
Effect of Jet Pulsing on Film Cooling, Part 1: Effectiveness and Flowfield Temperature Results
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
232
246
.
12.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
, 2006, “
Effect of Jet Pulsing on Film Cooling, Part 2: Heat Transfer Results
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
247
257
.
13.
Burdet
,
A.
, 2005, “
A Computationally Efficient Feature-Based Jet Model for Prediction of Film-Cooling Flows
,” Ph.D. thesis, ETH-Zürich, Switzerland.
14.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
, 2007, “
Modeling of Film Cooling—Part II: Model for Use in 3D CFD
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
221
231
.
15.
Burdet
,
A.
, and
Abhari
,
R. S.
, 2007, “
3D Flow Prediction and Improvement of Holes Arrangement of a Film-Cooled Turbine Blade Using a Feature-Based Jet Model
.”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
258
268
.
16.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2008, “
Experimental Validation of Quasi-Steady Assumption in Modeling of Unsteady Flow
,”
ASME J. Turbomach.
0889-504X,
130
(
1
), pp.
141
149
.
17.
Abhari
,
R. S.
, 1996, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
118
(
1
), pp.
123
133
.
18.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2006, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
141
159
.
19.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Method for Correlating Discharge Coefficients of Film-Cooling Holes
,”
AIAA J.
0001-1452,
36
(
6
), pp.
976
980
.
20.
Kohli
,
A.
, and
Bogard
,
D. G.
, 2005, “
Turbulent Transport in Film Cooling Flows
,”
ASME J. Heat Transfer
0022-1481,
127
(
5
), pp.
513
520
.
You do not currently have access to this content.