This study investigates convective transport phenomena of combined electro-osmotic and pressure-driven flow in a microchannel subject to constant surface heat flux, with Joule heating effect taken into account. The governing system of equations includes the electric potential field, flow field, and energy equations. Analytical solutions are obtained for constant fluid properties, while numerical solutions are presented for variable fluid properties. For constant properties, the problem is found to be governed by three ratios: the length scale ratio (the ratio of Debye length to half channel height), the velocity scale ratio (the ratio of pressure-driven velocity to electro-osmotic velocity), and the ratio of Joule heating to surface heat flux. A small length scale ratio corresponds to a microchannel, while finite length scale ratio represents a nanochannel. For electro-osmotic flow only, the momentum transport is solely a function of the length scale ratio. For combined electro-osmotic and pressure-driven flow, the velocity profile and therefore the friction factor depend on both the length scale ratio and the velocity scale ratio. Assuming a thermally fully developed flow, analytical expressions for the normalized temperature profile and Nusselt number are developed. The representative results for the friction factor, normalized temperature profile, and Nusselt number are illustrated for some typical values of the three ratios. For purely electro-osmotic flow, it is found that the Nusselt number increases with decreasing ε, approaching the value for slug flow as the length scale ratio approaches zero. For mixed flow with a given length scale ratio, the results show that the Nusselt number decreases with the velocity scale ratio, approaching the classical Poiseuille flow as the velocity scale ratio approaches infinite. When the effects of variable fluid properties are included in the analysis, numerical solutions are generated to explore the influence of thermal conductivity and viscosity variations with local temperature on the hydrodynamic and thermal characteristics of the fluid. These temperature-dependent property variations would initially develop pressure-driven flow, and correspondingly the dimensionless velocity and volume flow rate increase to account for such variations. The friction factor reduces considerably with viscosity variation, while the Nusselt number increases gently. Although the influence of thermal conductivity variation on the hydrodynamic characteristics is not impressive, it has certain impact on the heat transfer results; more specifically, increasing the conductivity variation will produce a sensible increase in Nusselt number but a small decrease in the normalized temperature.

1.
Kim
,
S. J.
, and
Kim
,
D.
, 1999, “
Forced Convection in Microstructure for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
,
121
, pp.
635
645
. 0022-1481
2.
Jang
,
S. P.
, and
Kim
,
S. J.
, 2005, “
Fluid Flow and Thermal Characteristics of a Microchannel Heat Sink Subject to an Impinging Air Jet
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
770
779
.
3.
Morini
,
G. L.
, and
Spiga
,
M.
, 2007, “
The Role of the Viscous Dissipation in Heated Microchannels
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
308
318
.
4.
Chen
,
C.-H.
, 2007, “
Forced Convection Heat Transfer in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2182
2189
. 0017-9310
5.
Woolley
,
A. T.
,
Hadley
,
D.
,
Landre
,
P.
,
deMello
,
A. J.
,
Mathies
,
R. A.
, and
Northrup
,
M. A.
, 1996, “
Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device
,”
Anal. Chem.
0003-2700,
68
, pp.
4081
4086
.
6.
Khandurina
,
J.
,
McKnight
,
T. E.
,
Jacobson
,
S. C.
,
Waters
,
L. C.
,
Foote
,
R. S.
, and
Ramsey
,
J. M.
, 2000, “
Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices
,”
Anal. Chem.
0003-2700,
72
, pp.
2995
3000
.
7.
Verpoorte
,
E.
, 2002, “
Microfluidic Chips for Clinical and Forensic Analysis
,”
Electrophoresis
0173-0835,
23
, pp.
677
712
.
8.
Taylor
,
M. T.
,
Nguyen
,
P.
,
Ching
,
J.
, and
Petersen
,
K. E.
, 2003, “
Simulation of Microfluidic Pumping in a Genomic DNA Blood-Processing Cassette
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
201
208
.
9.
Bourouina
,
T.
,
Bosseboeuf
,
A.
, and
Grandchamp
,
J.-P.
, 1997, “
Design and Simulation of an Electrostatic Micropump for Drug-Delivery Applications
,”
J. Micromech. Microeng.
0960-1317,
7
, pp.
186
188
.
10.
van Lintel
,
H. T. G.
,
van De Pol
,
F. C. M.
, and
Bouwstra
,
S.
, 1988, “
A Piezoelectric Micro Pump Based on Micromachining of Silicon
,”
Sens. Actuators
0250-6874,
15
, pp.
153
167
.
11.
Richter
,
A.
,
Plettner
,
A.
,
Hofmann
,
K. A.
, and
Sandmaier
,
H.
, 1991, “
A Micromachined Electrohydrodynamic (EHD) Pump
,”
Sens. Actuators, A
0924-4247,
29
, pp.
159
168
.
12.
Lemoff
,
A. V.
, and
Lee
,
A. P.
, 2000, “
An AC Magnetohydrodynamic Micropump
,”
Sens. Actuators B
0925-4005,
63
, pp.
178
185
.
13.
Arulanandam
,
S.
, and
Li
,
D.
, 2000, “
Liquid Transport in Rectangular Microchannels by Electro-Osmotic Pumping
,”
Colloids Surf., A
0927-7757,
161
, pp.
89
102
.
14.
Polson
,
N. A.
, and
Hayes
,
M. A.
, 2000, “
Electro-Osmotic Flow Control of Fluids on a Capillary Electrophoresis Microdevice Using an Applied External Voltage
,”
Anal. Chem.
0003-2700,
72
, pp.
1088
1092
.
15.
Chen
,
C.-H.
, and
Santiago
,
J. G.
, 2002, “
A Planar Electro-Osmotic Micropump
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
672
683
.
16.
Probstein
,
R. F.
, 1994,
Physicochemical Hydrodynamics
, 2nd ed.,
Wiley
,
New York
.
17.
Gleeson
,
J. P.
, 2002, “
Electro-Osmotic Flows With Random Zeta Potential
,”
J. Colloid Interface Sci.
0021-9797,
249
, pp.
217
226
.
18.
Maynes
,
D.
, and
Webb
,
B. W.
, 2003, “
Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
889
895
.
19.
Maynes
,
D.
, and
Webb
,
B. W.
, 2004, “
The Effect of Viscous Dissipation in Thermally Fully-Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
987
999
.
20.
Das
,
S.
, and
Chakraborty
,
S.
, 2006, “
Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electro-Osmotic Microchannel Flows of a Non-Newtonian Bio-Fluid
,”
Anal. Chim. Acta
0003-2670,
559
, pp.
15
24
.
21.
Park
,
H. M.
,
Lee
,
J. S.
, and
Kim
,
T. W.
, 2007, “
Comparison of the Nernst-Planck Model and the Poisson-Boltzmann Model for Electro-Osmotic Flows in Microchannels
,”
J. Colloid Interface Sci.
,
315
, pp.
731
739
. 0021-9797
22.
Conlisk
,
A. T.
, 2005, “
The Debye–Huckel Approximation: Its Use in Describing Electro-Osmotic Flow in Micro- and Nano-Channels
,”
Electrophoresis
0173-0835,
26
, pp.
1896
1912
.
23.
Burgreen
,
D.
, and
Nakache
,
F. R.
, 1964, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
0022-3654,
68
, pp.
1084
1091
.
24.
Hunter
,
R. J.
, 1981,
Zeta Potential in Colloidal Science: Principles and Applications
,
Academic
,
London
.
25.
Levine
,
S.
,
Marriott
,
J. R.
,
Neale
,
G.
, and
Epstein
,
N.
, 1975, “
Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-Potentials
,”
J. Colloid Interface Sci.
0021-9797,
52
, pp.
136
149
.
26.
Burmeister
,
L. C.
, 1983,
Convective Heat Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.