The accuracy of predictions of phonon thermal boundary conductance using traditional models such as the diffuse mismatch model (DMM) varies depending on the types of material comprising the interface. The DMM assumes that phonons, undergoing diffuse scattering events, are elastically scattered, which drives the energy conductance across the interface. It has been shown that at relatively high temperatures (i.e., above the Debye temperature) previously ignored inelastic scattering events can contribute substantially to interfacial transport. In this case, the predictions from the DMM become highly inaccurate. In this paper, the effects of inelastic scattering on thermal boundary conductance at metal/dielectric interfaces are studied. Experimental transient thermoreflectance data showing inelastic trends are reviewed and compared to traditional models. Using the physical assumptions in the traditional models and experimental data, the relative contributions of inelastic and elastic scattering to thermal boundary conductance are inferred.

1.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
2.
Little
,
W. A.
, 1959, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
0008-4204,
37
, pp.
334
349
.
3.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
, 2002,
Introduction to Physical Gas Dynamics
,
Krieger
,
Malabar, FL
.
4.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
5.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1987, “
Thermal Resistances at Interfaces
,”
Appl. Phys. Lett.
0003-6951,
51
, pp.
2200
2202
.
6.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
7.
Cahill
,
D. G.
,
Bullen
,
A.
, and
Lee
,
S.-M.
, 2000, “
Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films
,”
High Temp. - High Press.
0018-1544,
32
, pp.
135
142
.
8.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
,
Wiley
,
New York
.
9.
Dames
,
C.
, and
Chen
,
G.
, 2004, “
Theoretical Phonon Thermal Conductivity of Si∕Ge Superlattice Nanowires
,”
J. Appl. Phys.
0021-8979,
95
, pp.
682
693
.
10.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
, 2007, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3977
3989
.
11.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular Dynamics Simulation
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
2484
2486
.
12.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2005, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
315
322
.
13.
Costescu
,
R. M.
,
Wall
,
M. A.
, and
Cahill
,
D. G.
, 2003, “
Thermal Conductance Of Epitaxial Interfaces
,”
Phys. Rev. B
0163-1829,
67
, p.
054302
.
14.
Stoner
,
R. J.
, and
Maris
,
H. J.
, 1993, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50to300K
,”
Phys. Rev. B
0163-1829,
48
, pp.
16373
16387
.
15.
Snyder
,
N. S.
, 1970, “
Heat Transport Through Helium II: Kapitza Conductance
,”
Cryogenics
0011-2275,
10
, pp.
89
95
.
16.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
, 2006, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
0163-1829,
73
, p.
144301
.
17.
Hopkins
,
P. E.
,
Stevens
,
R. J.
, and
Norris
,
P. M.
, 2008, “
Influence of Inelastic Scattering at Metal-Dielectric Interfaces
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
022401
.
18.
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2007, “
Effects of Joint Vibrational States on Thermal Boundary Conductance
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
11
, pp.
247
257
.
19.
Gray
,
D. E.
, 1972,
American Institute of Physics Handbook
,
McGraw-Hill
,
New York
.
20.
Hopkins
,
P. E.
,
Norris
,
P. M.
,
Stevens
,
R. J.
,
Beechem
,
T.
, and
Graham
,
S.
, 2008, “
Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
062402
.
21.
Huberman
,
M. L.
, and
Overhauser
,
A. W.
, 1994, “
Electronic Kapitza Conductance at a Diamond-Pb Interface
,”
Phys. Rev. B
0163-1829,
50
, pp.
2865
2873
.
22.
Chen
,
G.
, 2003, “
Diffusion-Transmission Interface Condition for Electron and Phonon Transport
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
991
993
.
23.
Chen
,
G.
, 2005,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
.
24.
Fugate
,
R. Q.
, and
Swenson
,
C. A.
, 1969, “
Specific Heat of Al2O3 From 2to25K
,”
J. Appl. Phys.
0021-8979,
40
, pp.
3034
3036
.
25.
Levinshtein
,
M. E.
,
Rumyantsev
,
S. L.
, and
Shur
,
M. S.
, 2001,
Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.