The present study explores numerically and experimentally the process of a phase-change material (PCM) solidification in a spherical shell. At the initial state, the PCM liquid occupies 98.5% of the shell. The upper segment of 1.5% contains air, which flows in as the solidification progresses. In the experiments, a commercially available paraffin wax is used. Its properties are engaged in the numerical simulations. The investigation is performed for solidification in spherical shells of 20 mm, 40 mm, 60 mm, and 80 mm in diameter at the wall uniform temperature, which varied from 10°C to 40°C below the mean solidification temperature of the phase-change material. Transient numerical simulations are performed using the FLUENT 6.2 software and incorporate such phenomena as flow in the liquid phase, volumetric shrinkage due to solidification, and irregular boundary between the PCM and air. The numerical model is validated versus the experimental results. Shrinkage patterns and void formation are demonstrated. Dimensional analysis of the results is performed and presented as the PCM melt fractions versus the product of the Fourier and Stefan numbers. This analysis leads to a generalization that encompasses the cases considered herein.

1.
Moore
,
F. E.
, and
Bayazitoglu
,
Y.
, 1982, “
Melting Within a Spherical Enclosure
,”
ASME J. Heat Transfer
,
104
, pp.
19
23
. 0022-1481
2.
Roy
,
S. K.
, and
Sengupta
,
S.
, 1987, “
The Melting Process Within Spherical Enclosures
,”
ASME J. Heat Transfer
,
109
, pp.
460
462
. 0022-1481
3.
Bahrami
,
P. A.
, and
Wang
,
T. G.
, 1987, “
Analysis of Gravity and Conduction-Driven Melting in a Sphere
,”
ASME J. Heat Transfer
,
109
, pp.
806
809
. 0022-1481
4.
Tao
,
L. C.
, 1967, “
Generalized Numerical Solutions of Freezing a Saturated Liquid in Cylinders and Spheres
,”
AIChE J.
0001-1541,
13
, pp.
165
172
.
5.
Shih
,
Y. P.
, and
Chou
,
T. C.
, 1971, “
Analytical Solutions for Freezing a Saturated Liquid Inside or Outside Sphere
,”
Chem. Eng. Sci.
,
26
, pp.
1787
1793
. 0009-2509
6.
Pedroso
,
R. I.
, and
Domoto
,
G. A.
, 1973, “
Inward Spherical Solidification: Solution by the Method of Strained Coordinates
,”
Int. J. Heat Mass Transfer
,
16
, pp.
1037
1043
. 0017-9310
7.
Riley
,
D. S.
,
Smith
,
F. T.
, and
Poots
,
G.
, 1974, “
The Inward Solidification of Spheres and Circular Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
1507
1516
.
8.
Hill
,
J. M.
, and
Kucera
,
A.
, 1983, “
Freezing a Saturated Liquid Inside a Sphere
,”
Int. J. Heat Mass Transfer
,
26
, pp.
1631
1636
. 0017-9310
9.
Yao
,
L. S.
, and
Prusa
,
J.
, 1989, “
Melting and Freezing
,”
Adv. Heat Transfer
0065-2717,
19
, pp.
1
95
.
10.
Regin
,
A. F.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
, 2008, “
Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review
,”
Renewable Sustainable Energy Rev.
1364-0321,
12
, pp.
2438
2458
.
11.
Chan
,
C. W.
, and
Tan
,
F. L.
, 2006, “
Solidification Inside a Sphere: An Experimental Study
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
, pp.
335
341
.
12.
Ismail
,
K. A. R.
, 2002, “
Heat Transfer in Phase Change in Simple and Complex Geometries
,”
Thermal Energy Storage Systems and Applications
,
İ.
Dinçer
and
M. A.
Rosen
, eds.,
Wiley
,
Chichester
, Chap. 8, pp.
337
386
.
13.
El Omari
,
K.
, and
Dumas
,
J. P.
, 2004, “
Crystallization of Supercooled Spherical Nodules in a Flow
,”
Int. J. Therm. Sci.
,
43
, pp.
1171
1180
. 1290-0729
14.
Chalmers
,
B.
, 1964,
Principles of Solidification
,
Wiley
,
New York
.
15.
Revankar
,
S. T.
, and
Croy
,
T.
, 2007, “
Visualization Study of the Shrinkage Void Distribution in Thermal Energy Storage Shells of Different Geometry
,”
Exp. Therm. Fluid Sci.
,
31
, pp.
181
189
. 0894-1777
16.
Ziskind
,
G.
, and
Letan
,
R.
, 2007, “
Phase Change Materials: Recent Advances in Modeling and Experimentation
,”
Proceedings of the Heat SET 2007: Heat Transfer in Components and Systems for Sustainable Energy Technologies
, Chambery, France, Apr. 18–20.
17.
Sulfredge
,
C. D.
,
Chow
,
L. C.
, and
Tagavi
,
K. A.
, 1992, “
Void Formation in Radial Solidification of Cylinders
,”
ASME J. Sol. Energy Eng.
0199-6231,
114
, pp.
32
39
.
18.
Cho
,
K.
, and
Choi
,
S. H.
, 2000, “
Thermal Characteristics of Paraffin in a Spherical Capsule During Freezing and Melting Processes
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3183
3196
. 0017-9310
19.
Shamsundar
,
N.
, and
Sparrow
,
E. M.
, 1976, “
Effect of Density Change on Multidimensional Conduction Phase Change
,”
ASME J. Heat Transfer
,
98
, pp.
550
557
. 0022-1481
20.
Sun
,
D.
,
Annapragada
,
S. R.
,
Garimella
,
S. V.
, and
Singh
,
S. K.
, 2007, “
Analysis of Gap Formation in the Casting of Energetic Materials
,”
Numer. Heat Transfer, Part A
1040-7782,
51
, pp.
415
444
.
21.
Sun
,
D.
, and
Garimella
,
S. V.
, 2007, “
Numerical and Experimental Investigation of Solidification Shrinkage
,”
Numer. Heat Transfer, Part A
1040-7782,
52
, pp.
145
162
.
22.
Dubovsky
,
V.
,
Assis
,
E.
,
Kochavi
,
E.
,
Ziskind
,
G.
, and
Letan
,
R.
, 2008, “
Study of Solidification in Vertical Cylindrical Shells
,”
Proceedings of the Fifth European Thermal Sciences Conference
, Eindhoven, The Netherlands.
23.
Glaich
,
A.
,
Finkelshtein
,
L.
,
Dubovsky
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
, 2003, “
Experimental Investigation of Phase Change in a Spherical Enclosure
,”
Proceedings of the EUROTHERM Seminar 69: Heat and Mass Transfer in Solid-Liquid Phase Change Processes
, Bistra Castle, Slovenia.
24.
Assis
,
E.
,
Katsman
,
L.
,
Ziskind
,
G.
, and
Letan
,
R.
, 2007, “
Numerical and Experimental Study of Melting in a Spherical Shell
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1790
1804
. 0017-9310
25.
Yotvat
,
E.
, and
Zelikover
,
S.
, 2007–2008, “
Experimental Investigation of Paraffin Solidification
,” Graduation Project under the supervision of G. Ziskind and R. Letan, Heat Transfer Laboratory, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
26.
Viskanta
,
R.
, and
Gau
,
C.
, 1982, “
Inward Solidification of a Superheated Liquid in a Cooled Horizontal Tube
,”
Waerme- Stoffuebertrag.
0042-9929–Thermo and Fluid Dynamics
17
(
1
), pp.
39
46
.
27.
Yao
,
L. S.
, 1984, “
Natural Convection Effects in the Continuous Casting of a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
27
, pp.
697
704
. 0017-9310
You do not currently have access to this content.