A study of condensate retention and the attendant thermal-hydraulic effect associated with changes in air-side surface wettability is presented for a series of slit-fin-and-tube heat exchangers of identical geometry with controlled wettability covering a wide range of contact angles. An experiment in which the retained mass of air-side condensate was measured under dynamic conditions is described, and the results are analyzed using conventional thermal-hydraulic measurements of j and f. The data demonstrate that for the heat exchangers used in this study, the j factor is not strongly influenced by condensate retention, but the friction factor is significantly reduced for surfaces of increased wettability. Hydrophilic heat exchangers retain much less air-side condensate than do the hydrophobic heat exchangers, and the amount of retention is found to depend on the air-side Reynolds number (Redh) and the rate of latent heat transfer (Ql). Based on an assumption of filmwise condensation, a new model for predicting the mass of retained condensate is described and compared with the steady-sate retention data. The model is successful in predicting retained condensate over a wide range of tested conditions. The potential of this new approach and possible refinements that will add engineering value are discussed.

1.
Hong
,
K.
, and
Webb
,
R. L.
, 2000, “
Wetting Coatings for Dehumidifying Heat Exchangers
,”
HVAC&R Res.
1078-9669,
6
(
3
), pp.
229
239
.
2.
Min
,
J.
,
Webb
,
R. L.
, and
Bemisderfer
,
C. H.
, 2000, “
Long-Term Hydraulic Performance of Dehumidifying Heat-Exchangers With and Without Hydrophilic Coatings
,”
HVAC&R Res.
1078-9669,
6
(
3
), pp.
257
272
.
3.
Min
,
J.
, and
Webb
,
R. L.
, 2001, “
Studies of Condensate Formation and Drainage on Typical Fin Materials
,”
Exp. Therm. Fluid Sci.
,
25
, pp.
101
111
. 0894-1777
4.
Shin
,
J.
, and
Ha
,
S.
, 2002, “
The Effect of Hydrophilicity on Condensation Over Various Types of Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
0140-7007,
25
, pp.
688
694
.
5.
Sommers
,
A. D.
, and
Jacobi
,
A. M.
, 2006, “
Creating Micro-Scale Surface Topology to Achieve Anisotropic Wettability on an Aluminum Surface
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1571
1578
.
6.
Wang
,
C. C.
, and
Chang
,
C. T.
, 1998, “
Heat and Mass Transfer for Plate Fin-and-Tube Heat Exchangers, With and Without Hydrophilic Coating
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3109
3120
.
7.
Hong
,
K.
, and
Webb
,
R. L.
, 1999, “
Performance of Dehumidifying Heat Exchangers With and Without Wetting Coating
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
1018
1026
.
8.
Wang
,
C. C.
,
Lee
,
W. S.
,
Sheu
,
W. J.
, and
Chang
,
Y. J.
, 2002, “
A Comparison of the Airside Performance of the Fin-and-Tube Exchangers in Wet Conditions; With and Without Hydrophilic Coating
,”
Appl. Therm. Eng.
,
22
, pp.
267
278
. 1359-4311
9.
Kim
,
G.
,
Lee
,
H.
, and
Webb
,
R. L.
, 2002, “
Plasma Hydrophilic Surface Treatments for Dehumidifying Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
27
, pp.
1
10
. 0894-1777
10.
Beatty
,
K. O.
, and
Katz
,
D. L.
, 1948, “
Condensation of Vapors on the Outside of Finned Tubes
,”
Chem. Eng. Prog.
,
44
(
1
), pp.
55
70
. 0360-7275
11.
Rudy
,
T. M.
, and
Webb
,
R. L.
, 1985, “
An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tubes
,”
ASME J. Heat Transfer
,
107
, pp.
361
368
. 0022-1481
12.
Jacobi
,
A. M.
, and
Goldschmidt
,
V. W.
, 1990, “
Low Reynolds Number Heat and Mass Transfer Measurements of an Overall Counterflow, Baffled, Finned-Tube, Condensing Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
755
765
.
13.
Korte
,
C. M.
, and
Jacobi
,
A. M.
, 2001, “
Condensate Retention and Effects on the Performance of Plain Fin-and-Tube Heat Exchangers: Retention Data and Modeling
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
926
936
.
14.
El Sherbini
,
A. I.
, and
Jacobi
,
A. M.
, 2004, “
Liquid Drops on Vertical and Inclined Surfaces: I. An Experimental Study of Drop Geometry
,”
J. Colloid Interface Sci.
0021-9797,
273
, pp.
556
565
.
15.
El Sherbini
,
A. I.
, and
Jacobi
,
A. M.
, 2004, “
Liquid Drops on Vertical and Inclined Surfaces: II. A Method for Approximating Drop Shapes
,”
J. Colloid Interface Sci.
0021-9797,
273
, pp.
566
575
.
16.
El Sherbini
,
A. I.
, and
Jacobi
,
A. M.
, 2006, “
Retention Forces and Contact Angles for Critical Liquid Drops on Non-Horizontal Surfaces
,”
J. Colloid Interface Sci.
0021-9797,
299
, pp.
841
849
.
17.
El Sherbini
,
A. I.
, and
Jacobi
,
A. M.
, 2006, “
A Model for Condensate Retention on Plain-Fin Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
427
433
.
18.
Zhong
,
Y.
,
Joardar
,
A.
,
Gu
,
Z.
,
Park
,
Y.-G.
, and
Jacobi
,
A. M.
, 2005, “
Dynamic Dip Testing as a Method to Assess the Condensate Drainage Behavior From the Air-Side Surface of Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
29
, pp.
957
970
. 0894-1777
19.
Threlkeld
,
J. L.
, 1970,
Thermal Environmental Engineering
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
, 3rd ed.,
Wiley
,
New York
.
21.
Hong
,
T. K.
, and
Webb
,
R. L.
, 1996, “
Calculation of Fin Efficiency for Wet and Dry Fins
,”
HVAC&R Res.
1078-9669,
2
, pp.
27
41
.
22.
Kim
,
G. J.
, and
Jacobi
,
A. M.
, 2000, “
Condensate Accumulation Effects on the Air-Side Thermal Performance of Slit-Fin Surfaces
,”
CR-26, Air Conditioning and Refrigeration Center
,
University of Illinois
,
Urbana
.
23.
Wilson
,
E. E.
, 1915, “
A Basis for Rational Design of Heat Transfer Apparatus
,”
Trans. ASME
0097-6822,
37
, pp.
47
82
.
24.
Liu
,
L.
, and
Jacobi
,
A. M.
, 2006, “
The Effects of Hydrophilicity on Water Drainage and Condensate Retention on Air-Conditioning Evaporators
,”
Proceedings of the 11th International Refrigeration and Air Conditioning Conference at Purdue
, West Lafayette, IN, Article No. R090.
25.
Nusselt
,
W.
, 1916, “
Die Oberflachenkondensation des Wasserdampfes
,”
Z. Ver. Dtsch. Ing.
0341-7255,
60
, pp.
541
546
.
26.
Koh
,
J. C. Y.
,
Sparrow
,
E. M.
, and
Hartnett
,
J. P.
, 1961, “
The Two Phase Boundary Layer in Laminar Film Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
2
, pp.
69
82
.
27.
Koh
,
J. C. Y.
, 1962, “
Film Condensation in a Forced-Convection Boundary-Layer Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
5
, pp.
941
954
.
28.
Jacobs
,
H. R.
, 1966, “
An Integral Treatment of Combined Body Force and Forced Convection in Laminar Film Condensation
,”
Int. J. Heat Mass Transfer
,
9
, pp.
637
648
. 0017-9310
29.
Fujii
,
F.
, and
Uehara
,
H.
, 1972, “
Laminar Filmwise Condensation on a Vertical Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
217
233
.
30.
Mendez
,
F.
,
Lizardi
,
J. J.
, and
Trevino
,
C.
, 2000, “
Laminar Film Condensation Along a Vertical Fin
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2859
2868
. 0017-9310
31.
Churchill
,
S. W.
, and
Usagi
,
R.
, 1972, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
0001-1541,
18
(
6
), pp.
1121
1128
.
You do not currently have access to this content.