Employing a validated computer simulation model, entropy generation is analyzed in trapezoidal microchannels for steady laminar flow of pure water and CuO-water nanofluids. Focusing on microchannel heat sink applications, local and volumetric entropy rates caused by frictional and thermal effects are computed for different coolants, inlet temperatures, Reynolds numbers, and channel aspect ratios. It was found that there exists an optimal Reynolds number range to operate the system due to the characteristics of the two different entropy sources, both related to the inlet Reynolds number. Microchannels with high aspect ratios have a lower suitable operational Reynolds number range. The employment of nanofluids can further minimize entropy generation because of their superior thermal properties. Heat transfer induced entropy generation is dominant for typical microheating systems while frictional entropy generation becomes more and more important with the increase in fluid inlet velocity/Reynolds number.

1.
Kleinstreuer
,
C.
,
Li
,
J.
, and
Koo
,
J.
, 2008, “
Microfluidics of Nanodrug Delivery
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5590
5597
.
2.
Li
,
J.
, and
Kleinstreuer
,
C.
, 2008, “
Thermal Performance of Nanofluid Flow in Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
29
(
4
), pp.
1221
1232
.
3.
Bejan
,
A.
, 1996,
Entropy Generation Minimization, the Method of Thermodynamic Optimization of Finite-Size System and Finite-Time Processes
,
CRC
,
Boca Raton
.
4.
Bejan
,
A.
, 2002, “
Fundamentals of Exergy Analysis, Entropy Generation Minimization, and Generation of Flow Architecture
,”
Int. J. Energy Res.
0363-907X,
26
, pp.
0
43
.
5.
Selvarasu
,
N. K. C.
,
Tafti
,
D. K.
, and
Blackwell
,
N. E.
, 2010, “
Effect of Pin Density on Heat-Mass Transfer and Fluid Flow at Low Reynolds Numbers in Minichannels
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
061702
.
6.
Ratts
,
E. B.
, and
Raut
,
A. G.
, 2004, “
Entropy Generation Minimization of Fully Developed Internal Flow With Constant Heat Flux
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
656
659
.
7.
Sahin
,
A. Z.
, 1998, “
A Second Law Comparison for Optimum Shape of Duct Subjected to Constant Wall Temperature and Laminar Flow
,”
Heat Mass Transfer
0947-7411,
33
, pp.
425
430
.
8.
Sahin
,
A. Z.
, 2000, “
Entropy Generation in a Turbulent Liquid Flow Through a Smooth Duct Subjected to Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1469
1478
.
9.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2003, “
The Second Law Analysis in Fundamental Convective Heat Transfer Problems
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
177
186
.
10.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
, 2006, “
Dissipation and Entropy Generation in Fully Developed Forced and Mixed Laminar Convection
,”
Int. J. Therm. Sci.
1290-0729,
45
, pp.
998
1007
.
11.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2007, “
Optimal Design of Tube Banks in Crossflow Using Entropy Generation Minimization Method
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
2
), pp.
372
378
.
12.
Ko
,
T. H.
, and
Wu
,
C. P.
, 2009, “
A Numerical Study on Entropy Generation Induced by Turbulent Forced Convection in Curved Rectangular Ducts With Various Aspect Ratios
,”
Int. Commun. Heat Mass Transfer
0735-1933,
36
(
1
), pp.
25
31
.
13.
Ko
,
T. H.
, 2006, “
Numerical Investigation on Laminar Forced Convection and Entropy Generation in a Helical Coil With Constant Wall Heat Flux
,”
Numer. Heat Transfer, Part A
1040-7782,
49
, pp.
257
278
.
14.
Nguyen
,
N. -T.
, and
Wereley
,
S. T.
, 2006,
Fundamentals and Applications of Microfluidics
,
Arten
,
Boston
.
15.
Chein
,
R.
, and
Chuang
,
J.
, 2005, “
Analysis of Microchannel Heat Sink Performance Using Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
3104
3114
.
16.
Heris
,
S. Z.
,
Etemad
,
S. Gh.
, and
Esfahany
,
M. N.
, 2006, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
, pp.
529
535
.
17.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2006, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
2457
2463
.
18.
Li
,
J.
, and
Kleinstreuer
,
C.
, 2009, “
Microfluidics Analysis of Nanoparticle Mixing in a Microchannel System
,”
Microfluid. Nanofluid.
1613-4982,
6
, pp.
661
668
.
19.
Kleinstreuer
,
C.
, and
Li
,
J.
, 2008, “
Microscale Cooling Devices
,”
Encyclopedia of Micro and Nanofluidics
,
D.
Li
, ed.,
Springer-Verlag
,
Heidelberg, Germany
.
20.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
, 2007, “
Effect of Uncertainties in Physical Properties on Convection Heat Transfer With Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
240
249
.
21.
Li
,
X.
,
Zhu
,
D.
, and
Wang
,
X.
, 2009, “
Experimental Investigation on Viscosity of Cu–H2O Nanofluids
,”
Journal of Wuhan University of Technology Mater. Sci. Ed.
,
24
, pp.
48
52
.
22.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3701
3707
.
23.
Maxwell
,
J. C.
, 1904,
A Treatise on Electricity and Magnetism
, 2nd ed.,
Oxford University Press
,
Cambridge, UK
.
24.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2003, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidics Effects
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
568
579
.
25.
Li
,
J.
, 2008, “
Computational Analysis of Nanofluid Flow in Microchannels With Applications to Microheat Sinks and Bio-MEMS
,” Ph.D. dissertation, MAE Department, NCSU, Raleigh, NC.
26.
Kleinstreuer
,
C.
, 1997,
Engineering Fluid Dynamics
,
Cambridge University Press
,
New York
.
27.
Bejan
,
A.
, 1982,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
28.
Lai
,
W. Y.
,
Vinod
,
S.
,
Phelan
,
P. E.
, and
Prasher
,
R.
, 2009, “
Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
112401
.
29.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
14
), pp.
2519
2525
.
You do not currently have access to this content.