This paper is devoted to the simulation of 3D transient radiation and conduction heat transfer occurring inside thin glass sheets undergoing high temperature processing. The glass is considered as an absorbing, emitting, and nonscattering medium. The zonal method is used to establish the governing radiation transfer model. Direct exchange areas are calculated by the flux planes approximation. The thin layer approximation (TLA) is then introduced for increasing CPU efficiency. Three different numerical integration schemes made possible by the TLA are presented. Comparisons are made, with calculations performed using the finite volume method (FVM). The transient coupled energy equation is solved by a full implicit control volume method using the incomplete Cholesky conjugate gradient method. The heat transfer analysis of a glass sheet residing inside a hot rectangular enclosure is studied. Results obtained by the zonal method, with or without the TLA, are in close agreement with those obtained by the FVM. CPU requirements for radiative heat transfer analysis of the zonal method with TLA are, depending on the numerical integration scheme used, between 8 and 23 times smaller than those of the zonal method without TLA. The difference between the results of the different models never exceeds 4%. The zonal method with the TLA offered significant improvements in CPU time when compared with the original zonal method with similar or acceptable accuracy.

1.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
, Chaps. 6 and 15.
2.
Fiveland
,
W. A.
, 1987, “
Discrete-Ordinates Method for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media
,”
ASME J. Heat Transfer
0022-1481,
109
(
3
), pp.
809
812
.
3.
Raithby
,
G. D.
, 1999, “
Discussion of the Finite-Volume Method for Radiation, and Its Application Using 3-D Unstructured Meshed
,”
Numer. Heat Transfer, Part B
1040-7790,
35
(
4
), pp.
389
405
.
4.
Versteeg
,
H. K.
,
Henson
,
J. C.
, and
Malalaserka
,
W.
, 2003, “
An Adaptive Angular-Quadrature for the Discrete Transfer Method Based on Error Estimation
,”
ASME J. Heat Transfer
0022-1481,
125
(
2
), pp.
301
311
.
5.
Nisipeanu
,
E.
, and
Jones
,
P. D.
, 2003, “
Monte Carlo Simulation of Radiative Heat Transfer in Coarse Fibrous Media
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
748
752
.
6.
Yuen
,
W. W.
, and
Takara
,
E. E.
, 1997, “
The Zonal Method: A Practical Solution Method for Radiative Transfer in Non-Isothermal Inhomogeneous Media
,”
Annu. Rev. Heat Transfer
1049-0787,
8
, pp.
153
215
.
7.
Asllanaj
,
F.
,
Feldheim
,
V.
, and
Lybaert
,
P.
, 2007, “
Solution of Radiative Heat Transfer in 2-D Geometries by a Modified Finite Volume Method Based on a Cell Vertex Scheme Using Unstructured Triangular Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
51
(
2
), pp.
97
119
.
8.
Lentes
,
F. T.
, and
Siedow
,
N.
, 1999, “
Three-Dimensional Radiative Heat Transfer in Glass Cooling Processes
,”
Glass Sci. Technol.
,
72
(
6
), pp.
188
196
.
9.
Siedow
,
N.
,
Crosan
,
T.
,
Lochegnies
,
D.
, and
Romero
,
E.
, 2005, “
Application of a New Method for Radiative Heat Transfer to Flat Glass Tempering
,”
J. Am. Ceram. Soc.
0002-7820,
88
(
8
), pp.
2181
2187
.
10.
Buonanno
,
G.
,
Dell'Isola
,
M.
,
Frattolillo
,
A.
, and
Giovinco
,
G.
, 2005, “
Thermal Analysis of a Glass Bending Furnace
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
2108
2121
.
11.
Virgone
,
J.
,
Depecker
,
P.
,
Meyer
,
M.
, and
Fredholm
,
A.
, 1996, “
Modélisation Thermique de L'opération de Formage à Chaud de Feuilles de Verre
,”
Rev. Gen. Therm.
0035-3159,
35
(
410
), pp.
125
140
.
12.
Van der Liden
,
B.
, 2002, “
Radiative Heat Transfer in Glass: The Algebraic Ray Tracing Method
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven.
13.
Hottel
,
H. C.
, and
Cohen
,
E. S.
, 1958, “
Radiant Heat Exchange in a Gas Filled Enclosure: Allowance for Nonuniformity of Gas Temperature
,”
AIChE J.
0001-1541,
4
, pp.
3
14
.
14.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
, 1967,
Radiative Transfer
,
McGraw-Hill
,
New York
.
15.
Haghighat
,
F.
,
Li
,
Y.
, and
Megri
,
A. C.
, 2001, “
Development and Validation of a Zonal Model—POMA
,”
Build. Environ.
0360-1323,
36
, pp.
1039
1047
.
16.
Siegel
,
R.
, and
Howell
,
J.
, 2002,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor & Francis
,
New York
, Chap. 18.
17.
Ferrand
,
L.
, 2003, “
Modélisation et Expérimentation des Fours de Réchauffage Sidérurgiques Equipés de Brûleurs Régénératifs à Oxydation sans Flamme
,” Ph.D. thesis, Ecole de Mines de Paris, Paris, France.
18.
Emery
,
A. F.
,
Johansson
,
O.
, and
Abrous
,
A.
, 1987, “
Radiation Heat Transfer Shape Factors for Combustion Systems
,”
Fundamentals and Applications of Radiation Heat Transfer
,
72
, pp.
119
126
.
19.
Edwards
,
D. K.
, 1986, “
The Plating Algorithm for Radiation Script-F Transfer Factor
,”
ASME J. Heat Transfer
0022-1481,
108
(
1
), pp.
237
238
.
20.
Cai
,
W.
, and
El Khoury
,
K.
, 1996, “
Radiative Heat Transfer Model in Industrial Enclosures by Ray-Tracing
,”
Proceedings of the Fourth International Symposium on Heat Transfer
, Beijing, China.
21.
Hitti
,
E. L.
,
Nemer
,
G.
,
Khoury
,
M.
,
El
,
K.
, and
Clodic
,
D.
, 2007, “
Modified Zonal Method for Thin Solid Semi-Transparent Media With Reflective Boundary
,”
Proceedings of the ASME-JSME Heat Transfer Conference
, Vancouver.
You do not currently have access to this content.