In this combined experimental and simulation investigation, a stream of HFE-7100 droplets striking a prewetted surface under constant heat flux was studied. An implicit free surface capturing technique based on the Volume-of-Fluid (VOF) approach was employed to simulate this process numerically. Experimentally, an infrared thermography technique was used to measure the temperature distribution of the surface consisting of a 100 nm ITO layer on a ZnSe substrate. The heat flux was varied to investigate the heat transfer behavior of periodic droplet impingement at the solid–liquid interface. In both experiments and simulations, the morphology of the impact zone was characterized by a quasi-stationary liquid impact crater. Comparison of the radial temperature profiles on the impinging surface between the experiments and numerical simulations yielded reasonable agreement. Due to the strong radial flow emanating from successive droplet impacts, the temperature distribution inside the crater region was found to be significantly reduced from its saturated value. In effect, the heat transfer mode in this region was governed by single phase convective and conductive heat transfer, and was mostly affected by the HFE-7100 mass flow rates or the number of droplets. At higher heat fluxes, the minimum temperature, and its gradient with respect to the radial coordinate, increased considerably. Numerical comparison between average and instantaneous temperature profiles within the droplet impact region showed the effect of thermal mixing produced by the liquid crowns formed during successive droplet impact events.

References

1.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
, 2006, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proceedings of the IEEE
,
94
(
8
), pp.
1549
1570
.
2.
Sehmbey
,
M. S.
,
Chow
,
L. C.
,
Hahn
,
O. J.
, and
Pais
,
M. R.
, 1995, “
Effect of Spray Characteristics on Spray Cooling With Liquid Nitrogen
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
757
765.
3.
Pais
,
M.
,
Tiltion
,
D.
, and
Chow
,
L.
, 1989,
“High Heat Flow, Low Superheat Evaporative Spray Cooling,”
AIAA-89-0241, pp.
1
10
.
4.
Sodtke
,
C.
, and
Stephan
,
P.
, 2007, “
Spray Cooling on Micro Structured Surfaces
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4089
4097.
5.
Hsieh
,
C. C.
, and
Yao
,
S. C.
, 2006, “
Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
962
974.
6.
Selvam
,
R. P.
,
Lin
,
L.
, and
Ponnappan
,
R.
, 2005,
“Computational Modeling of Spray Cooling: Current Status and Future Challenges,”
AIP Conference Proceedings
, Vol.
746
, pp.
56
63
.
7.
Kim
,
J.
, 2007, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767.
8.
Chen
,
R.-H.
,
Chow
,
L.
, and
Navedo
,
J.
, 2002. “
Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4033
4043.
9.
Mudawar
,
I.
, and
Estes
,
K. A.
, 1996, “
Optimizing and Predicting CHF in Spray Cooling of a Square Surface
,”
J. Heat Transfer
,
118
, p.
672.
10.
Di Marzo
,
M.
,
Tartarini
,
P.
,
Liao
,
Y.
,
Evans
,
D.
, and
Baum
,
H.
, 1993, “
Evaporative Cooling Due to a Gently Deposited Droplet
,”
Int. J. Heat Mass Transfer
,
36
(
17
), pp.
4133
4139.
11.
Pasandideh-Fard
,
M.
,
Aziz
,
S. D.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2001, “
Cooling Effectiveness of a Water Drop Impinging on a Hot Surface
,”
Int. J. Heat Fluid Flow
,
22
(
2
), pp.
201
210.
12.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2002, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
,
45
(
11
), pp.
2229
2242.
13.
Nikolopoulos
,
N.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
, 2007, “
A Numerical Investigation of the Evaporation Process of a Liquid Droplet Impinging Onto a Hot Substrate
,”
Int. J. Heat Mass Transfer
,
50
, pp.
303
319.
14.
Shen
,
J.
,
Graber
,
C.
,
Liburdy
,
J.
,
Pence
,
D.
, and
Narayanan
,
V.
, 2010, “
Simultaneous Droplet Impingement Dynamics and Heat Transfer on Nano-Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
34
, pp.
496
503.
15.
Bhardwaj
,
R.
,
Longtin
,
J.
, and
Attinger
,
D.
, 2010, “
Interfacial Temperature Measurements, High-Speed Visualization and Finite-Element Simulations of Droplet Impact and Evaporation on a Solid Surface
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3733
3744.
16.
Ghafouri-Azar
,
R.
,
Shakeri
,
S.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2003, “
Interactions Between Molten Metal Droplets Impinging on a Solid Surface
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1395
1407.
17.
Kamnis
,
S.
,
Gu
,
S.
,
Lu
,
T.
, and
Chen
,
C.
, 2008,
“Numerical Modelling of Sequential Droplet Impingements,”
J. Phys. D: Appl. Phys.
,
41
, p.
165303
.
18.
Fathi
,
S.
,
Dickens
,
P.
, and
Fouchal
F.
, 2010,
“Regimes of Droplet Train Impact on a Moving Surface in an Additive Manufacturing Process,”
J. Mater. Process. Technol.
,
210
, pp.
550
559
.
19.
Kamnis
,
S.
, and
Gu
,
S.
, 2005, “
Numerical Modelling of Droplet Impingement
,”
J. Phys. D: Appl. Phys.
,
38
, pp.
3664
3673.
20.
2008,
“The Open Source CFD Toolbox,”
www.openfoam.comwww.openfoam.com.
21.
Rusche
,
H.
, 2002,
“Computational Fluid Dynamics of Dispersed Two Phase Flows at High Phase Fractions,”
Ph.D. thesis, Imperial College of Science Technology and Medicine, London, England.
22.
Bohorquez
,
P.
, 2008,
“Study and Numerical Simulation of Sediment Transport in Free Surface Flow,”
Ph.D. thesis,
University of Malaga
, Malaga, Spain.
23.
Chang
,
Y.
,
Hou
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
, 1996, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comput. Phys.
,
124
, pp.
449
464.
24.
Brackbill
,
J.
,
Kothe
,
D.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354.
25.
Sethian
,
S.
, and
Smereka
,
P.
, 2003, “
Level Set Methods for Fluid Interfaces
,”
Annu. Rev. Fluid Mech.
,
35
, pp.
341
372.
26.
Ferziger
,
J. H.
, and
Peric
,
M.
, 2002,
Computational Methods for Fluid Dynamics
, 3rd ed.
Springer
,
New York
.
27.
Versteeg
,
H.
, and
Malalasekera
,
W.
, 2007,
An Introduction to Computational Fluid Dynamics The Finite Volume Method
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Gehring
,
E.
, 2010,
“Numerical Simulation of Heat Transfer and Boundary Layer Dynamics in an Impacting Train of Droplets,”
Master’s thesis, University of Wisconsin-Madison, Madison, WI.
29.
Cossali
,
G. E.
,
Coghe
,
A.
, and
Marengo
,
M.
, 1997,
“Impact of a Single Drop on a Wetted Solid Surface,”
Exp. Fluids
,
22
(
6
), pp.
463
472
.
30.
White
,
F.
, 2006,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
New York
.
31.
Soriano
,
G.
,
Alvarado
,
J.
, and
Lin
,
Y.
, 2010, “
Experimental Characterization of Single and Multiple Droplet Impingement on Surfaces Subject to Constant Heat Flux Conditions
,”
Proceedings of the International Heat Transfer Conference- IHTC14
.
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), p.
38.
33.
Bang
,
C.
,
Buongiorno
,
J.
,
Hu
,
L.-W.
, and
Wang
,
H.
, 2008,
“Measurement of Key Pool Boiling Parameters in Nanofluids for Nuclear Applications,”
J. Power Energy Sys
,
2
(
1
), pp.
340
351
.
34.
Soriano
,
G.
, 2011,
“Experimental Study of Droplet Impingement Cooling Under Constant Heat Flux Conditions,”
Ph.D. thesis, Texas A&M University, College Station, TX.
35.
Driggers
,
R. G.
, 2003,
Encyclopedia of Optical Engineering
,
Marcel Dekker
,
New York
.
36.
Jha
,
A. R.
, 2000,
Infrared Technology: Applications to Electro-Optics, Photonic Devices: Sensors (Wiley Series in Microwave and Optical Engineering)
,
Wiley
,
New York
.
37.
2002. 3M NovecTM Engineered Fluid HFE-7100. website, 3M Center Building 223-6S-04
St. Paul
, MN.
38.
Yarin
,
A.
, 2006, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
159
192.
39.
Chaudhari
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
, 2010, “
Heat Transfer Characteristics of Synthetic Jet Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1057
1069.
40.
Trujillo
,
M.
, and
Lee
,
C.-F.
, 2001, “
Modeling Crown Formation Due to the Splashing of a Droplet
,”
Phys. Fluids
,
13
(
9
), pp.
2503
2516.
You do not currently have access to this content.