An improved volume of fluid method called the accurate density and viscosity volume of fluid (ADV-VOF) method is proposed to solve two-phase flow problems. The method has the following features: (1) All operations are performed on a collocated grid system. (2) The piecewise linear interface calculation is used to capture interfaces and perform accurate estimations of cell-edged density and viscosity. (3) The conservative Navier–Stokes equations are solved with the convective term discretized by a second and third order interpolation for convection scheme. (4) A fractional-step method is applied to solve the conservative Navier–Stokes equations, and the BiCGSTAB algorithm is used to solve the algebraic equations by discretizing the pressure-correction equation. The above features guarantee a simple, stable, efficient, and accurate simulation of two-phase flow problems. The effectiveness of the ADV-VOF method is verified by comparing it with the conventional volume of fluid method with rough treatment of cell-edged density and viscosity. It is found that the ADV-VOF method could successfully model the two-phase problems with large density ratio and viscosity ratio between two phases and is better than the conventional volume of fluid method in this respect.

1.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
, 1992, “
A Front-Tracking Method for Viscous, Incompressible Multi-Fluid Flows
,”
J. Comput. Phys.
0021-9991,
100
, pp.
25
37
.
2.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
, 1998, “
Direct Numerical Simulation of Bubble Flows Part I. Low Reynolds Number Arrays
,”
J. Fluid Mech.
0022-1120,
377
, pp.
313
345
.
3.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
, 1999, “
Direct Numerical Simulation of Bubble Flows Part II. Moderate Reynolds Number Arrays
,”
J. Fluid Mech.
0022-1120,
385
, pp.
325
358
.
4.
Tryggvason
,
G.
,
Bunner
,
B.
, and
Esmaeeli
,
A.
, 2001, “
A Front Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
0021-9991,
169
(
2
), pp.
708
759
.
5.
Welch
,
J. E.
,
Harlow
,
F. H.
,
Shannon
,
J. P.
, and
Daly
,
B. J.
, 1965, “
The MAC Method: A Computing Technique for Solving Viscous Incompressible Transient Fluid Flow Problems Involving Free Surfaces
,” Los Alamos Scientific Laboratory, Report No. LA-3425.
6.
Rider
,
W. J.
, and
Kothe
,
D. B.
, 1995, “
Stretching and Tearing Interface Tracking Methods
,” http://laws.lanl.gov/XHM/personnel/wjr/Web_papers/pubs.htmlhttp://laws.lanl.gov/XHM/personnel/wjr/Web_papers/pubs.html
7.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
114
, pp.
146
159
.
8.
Son
,
G.
, and
Dhir
,
V. K.
, 1998, “
Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Method
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
183
192
.
9.
Osher
,
S.
, and
Fedkiw
,
R. P.
, 2001, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
0021-9991,
169
, pp.
463
502
.
10.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundary
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
11.
Youngs
,
D. L.
, 1982,
Time-Dependent Multi-Material Flow With Large Fluid Distortion Numerical Method for Fluid Dynamics
,
Academic
,
New York
, pp.
273
285
.
12.
Rider
,
W. J.
, and
Kothe
,
D. B.
, 1998, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
0021-9991,
141
, pp.
112
152
.
13.
Chen
,
L.
, and
Li
,
Y. G.
, 1998, “
A Numerical Method for Two-Phase Flows With an Interface
,”
Environ. Modell. Software
1364-8152,
13
, pp.
247
255
.
14.
Gueyffier
,
D.
,
Li
,
J.
,
Nadim
,
A.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
, 1999, “
Volume-of-Fluid Interface Tracking With Smoothed Surface Stress Methods for Three-Dimensional Flows
,”
J. Comput. Phys.
0021-9991,
152
, pp.
423
456
.
15.
Agarwal
,
D. K.
,
Welch
,
S. W. J.
,
Biswas
,
G.
, and
Durst
,
F.
, 2004, “
Planar Simulation of Bubble Growth in Film Boiling in Near-Critical Water Using a Variant of the VOF Method
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
329
338
.
16.
Ginzburg
,
I.
, and
Wittum
,
G.
, 2001, “
Two-Phase Flows on Interface Refined Grids Modeled With VOF, Staggered Finite Volume, and Spline Interpolants
,”
J. Comput. Phys.
0021-9991,
166
, pp.
302
335
.
17.
Lorstad
,
D.
, and
Fuchs
,
L.
, 2004, “
High-Order Surface Tension VOF-Model for 3D Bubble Flows With High Density Ratio
,”
J. Comput. Phys.
0021-9991,
200
, pp.
153
176
.
18.
Tao
,
W. Q.
, 2001,
Numerical Heat Transfer
, 2nd ed.,
Xi’an Jiaotong University Press
,
Xi'an, Shaanxi, P.R. China
.
19.
Rudman
,
M.
, 1998, “
A Volume-Tracking Method for Incompressible Multifluid Flows With Large Density Variations
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
357
378
.
20.
Darwish
,
M. S.
, 1993, “
A New-High Resolution Scheme Based on the Normalized Variable Formulation
,”
Numer. Heat Transfer, Part B
1040-7790,
24
, pp.
353
371
.
21.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
22.
Monaghan
,
J. J.
, 1992, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
0066-4146,
30
, pp.
543
574
.
23.
Chorin
,
A. J.
, 1968, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
0025-5718,
22
, pp.
745
762
.
24.
Perot
,
J. B.
, 1993, “
An Analysis of the Fractional Step Method
,”
J. Comput. Phys.
0021-9991,
108
, pp.
51
58
.
25.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trading Edge Separations
,”
AIAA J.
0001-1452,
21
(
11
), pp.
1525
1532
.
26.
van der Vorst
,
H. A.
, 1992, “
BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
13
(
2
), pp.
631
644
.
27.
van der Vorst
,
H. A.
, 2002, “
Efficient and Reliable Iterative Methods for Linear Systems
,”
J. Comput. Appl. Math.
0377-0427,
149
, pp.
251
265
.
28.
Gustafsson
,
I.
, 1978, “
A Class of First Order Factorization Methods
,”
BIT
0006-3835,
18
, pp.
142
156
.
29.
Martin
,
J. C.
, and
Moyce
,
W. J.
, 1952, “
An Experimental Study of the Collapse of Fluid Columns on a Rigid Horizontal Plane
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
244
(
882
), pp.
312
324
.
30.
Grace
,
J. R.
, 1973, “
Shapes and Velocities of Bubbles Rising in Infinite Liquids
,”
Trans. Inst. Chem. Eng.
0371-7496,
51
, pp.
116
120
.
31.
Sussman
,
M.
,
Smith
,
K. M.
,
Hussaini
,
M. Y.
,
Ohta
,
M.
, and
Zhi-Wei
,
R.
, 2007, “
A Sharp Interface Method for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
0021-9991,
221
, pp.
469
505
.
32.
Kang
,
M.
,
Fedkiw
,
R. P.
, and
Liu
,
X. D.
, 2000, “
A Boundary Condition Capturing Method for Multiphase Incompressible Flow
,”
J. Sci. Comput.
0885-7474,
15
(
3
), pp.
323
360
.
You do not currently have access to this content.