Fiber aligned frequency domain thermoreflectance (FAFDTR) is a simple noncontact optical technique for accurately measuring the thermal conductivity of thin films and bulk samples for a wide range of materials, including electrically conducting samples. FAFDTR is a single-sided measurement that requires minimal sample preparation and no microfabrication. Like existing thermoreflectance techniques, a modulated pump laser heats the sample surface, and a probe laser monitors the resultant thermal wave via the temperature dependent reflectance of the surface. Via the use of inexpensive fiber coupled diode lasers and common mode rejection, FAFDTR addresses three challenges of existing optical methods: complexity in setup, uncertainty in pump-probe alignment, and noise in the probe laser. FAFDTR was validated for thermal conductivities spanning three orders of magnitude (0.1100W/mK), and thin film thermal conductances greater than 10W/m2K. Uncertainties of 10–15% were typical, and were dominated by uncertainties in the laser spot size. A parametric study of sensitivity for thin film samples shows that high thermal conductivity contrast between film and substrate is essential for making accurate measurements.

1.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Abbott
,
G. L.
, and
Butler
,
C. P.
, 1961, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,”
J. Appl. Phys.
0021-8979,
32
(
9
), pp.
1679
1684
.
2.
Paddock
,
C. A.
, and
Eesley
,
G. L.
, 1986, “
Transient Thermoreflectance From Thin Metal-Films
,”
J. Appl. Phys.
0021-8979,
60
(
1
), pp.
285
290
.
3.
Boccara
,
A. C.
,
Fournier
,
D.
, and
Badoz
,
J.
, 1980, “
Thermooptical Spectroscopy—Detection by the Mirage Effect
,”
Appl. Phys. Lett.
0003-6951,
36
(
2
), pp.
130
132
.
4.
Murphy
,
J. C.
, and
Aamodt
,
L. C.
, 1980, “
Photothermal Spectroscopy Using Optical Beam Probing—Mirage Effect
,”
J. Appl. Phys.
0021-8979,
51
(
9
), pp.
4580
4588
.
5.
Rosencwaig
,
A.
,
Opsal
,
J.
,
Smith
,
W. L.
, and
Willenborg
,
D. L.
, 1985, “
Detection of Thermal Waves Through Optical Reflectance
,”
Appl. Phys. Lett.
0003-6951,
46
(
11
), pp.
1013
1015
.
6.
Cahill
,
D. G.
, 1990, “
Thermal-Conductivity Measurement From 30-K to 750-K—The 3-Omega Method
,”
Rev. Sci. Instrum.
0034-6748,
61
(
2
), pp.
802
808
.
7.
Ohsone
,
Y.
,
Wu
,
G.
,
Dryden
,
J.
,
Zok
,
F.
, and
Majumdar
,
A.
, 1999, “
Optical Measurement of Thermal Contact Conductance Between Wafer-Like Thin Solid Samples
,”
ASME J. Heat Transfer
0022-1481,
121
(
4
), pp.
954
963
.
8.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
9.
Anderson
,
A. C.
, and
Wolfe
,
J. P.
, 1986,
Phonon Scattering in Condensed Matter V: Proceedings of the Fifth International Conference
, Urbana, IL, Jun. 2–6,
Springer-Verlag
,
Berlin
.
10.
Cahill
,
D. G.
, 2004, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
0034-6748,
75
(
12
), pp.
5119
5122
.
11.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
, 2002, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
0022-1481,
124
(
2
), pp.
223
241
.
12.
Käding
,
O. W.
,
Skurk
,
H.
, and
Goodson
,
K. E.
, 1994, “
Thermal Conduction in Metallized Silicon-Dioxide Layers on Silicon
,”
Appl. Phys. Lett.
0003-6951,
65
(
13
), pp.
1629
1631
.
13.
Kang
,
K.
,
Koh
,
Y. K.
,
Chiritescu
,
C.
,
Zheng
,
X.
, and
Cahill
,
D. G.
, 2008, “
Two-Tint Pump-Probe Measurements Using a Femtosecond Laser Oscillator and sharp-Edged Optical Filters
,”
Rev. Sci. Instrum.
0034-6748,
79
(
11
), p.
114901
.
14.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W. E.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser-Heating of Multilayer Metals. 2. Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
17
), pp.
2799
2808
.
15.
Thomsen
,
C.
,
Strait
,
J.
,
Vardeny
,
Z.
,
Maris
,
H. J.
,
Tauc
,
J.
, and
Hauser
,
J. J.
, 1984, “
Coherent Phonon Generation and Detection by Picosecond Light-Pulses
,”
Phys. Rev. Lett.
0031-9007,
53
(
10
), pp.
989
992
.
16.
Rantala
,
J.
,
Wei
,
L. H.
,
Kuo
,
P. K.
,
Jarrinen
,
J.
,
Luukkala
,
M.
, and
Thomas
,
R. L.
, 1993, “
Determination of Thermal-Diffusivity of Low-Diffusivity Materials Using the Mirage Method With Multiparameter Fitting
,”
J. Appl. Phys.
0021-8979,
73
(
6
), pp.
2714
2723
.
17.
Pottier
,
L.
, 1994, “
Micrometer Scale Visualization of Thermal Waves by Photoreflectance Microscopy
,”
Appl. Phys. Lett.
0003-6951,
64
(
13
), pp.
1618
1619
.
18.
Lepoutre
,
F.
,
Balageas
,
D.
,
Forge
,
P.
,
Hirschi
,
S.
,
Joulaud
,
J. L.
,
Rochais
,
D.
, and
Chen
,
F. C.
, 1995, “
Micron-Scale Thermal Characterizations of Interfaces Parallel or Perpendicular to the Surface
,”
J. Appl. Phys.
0021-8979,
78
(
4
), pp.
2208
2223
.
19.
Taketoshi
,
N.
,
Ozawa
,
M.
,
Ohta
,
H.
, and
Baba
,
T.
, 1999, “
Thermal Effusivity Distribution Measurements Using a Thermoreflectance Technique
,”
Photoacoustic and Photothermal Phenomena: Tenth International Conference
,
F.
Scudieri
and
M.
Bertolotti
, eds.,
AIP
,
New York
.
20.
Hatori
,
K.
,
Taketoshi
,
N.
,
Baba
,
T.
, and
Ohta
,
H.
, 2005, “
Thermoreflectance Technique to Measure Thermal Effusivity Distribution With High Spatial Resolution
,”
Rev. Sci. Instrum.
0034-6748,
76
(
11
), pp.
114901
.
21.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
, 2009, “
A Frequency-Domain Thermoreflectance Method for the Characterization of Thermal Properties
,”
Rev. Sci. Instrum.
0034-6748,
80
(
9
), pp.
094901
.
22.
Capinski
,
W. S.
, and
Maris
,
H. J.
, 1996, “
Improved Apparatus for Picosecond Pump-and-Probe Optical Measurements
,”
Rev. Sci. Instrum.
0034-6748,
67
(
8
), pp.
2720
2726
.
23.
Yarai
,
A.
, and
Nakanishi
,
T.
, 2007, “
Laptop Photothermal Reflectance Measurement Instrument Assembled With Optical Fiber Components
,”
Rev. Sci. Instrum.
0034-6748,
78
(
5
), p.
054903
.
24.
Weaver
,
J. H.
,
Lynch
,
D. W.
,
Culp
,
C. H.
, and
Rosei
,
R.
, 1976, “
Thermoreflectance of V, Nb, and Paramagnetic Cr
,”
Phys. Rev. B
0556-2805,
14
(
2
), pp.
459
463
.
25.
Feldman
,
A.
, 1999, “
Algorithm for Solutions of the Thermal Diffusion Equation in a Stratified Medium With a Modulated Heating Source
,”
High Temp. - High Press.
0018-1544,
31
(
3
), pp.
293
298
.
26.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
27.
Lee
,
S. M.
, and
Cahill
,
D. G.
, 1997, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
0021-8979,
81
(
6
), pp.
2590
2595
.
28.
Yamane
,
T.
,
Nagai
,
N.
,
Katayama
,
S.
, and
Todoki
,
M.
, 2002, “
Measurement of Thermal Conductivity of Silicon Dioxide Thin Films Using a 3 Omega Method
,”
J. Appl. Phys.
0021-8979,
91
(
12
), pp.
9772
9776
.
29.
Chien
,
H. C.
,
Yao
,
D. J.
,
Huang
,
M. J.
, and
Chang
,
T. Y.
, 2008, “
Thermal Conductivity Measurement and Interface Thermal Resistance Estimation Using SiO2 Thin Film
,”
Rev. Sci. Instrum.
0034-6748,
79
(
5
), pp.
054902
.
30.
Bao
,
Z. N.
,
Feng
,
Y.
,
Dodabalapur
,
A.
,
Raju
,
V. R.
, and
Lovinger
,
A. J.
, 1997, “
High-Performance Plastic Transistors Fabricated by Printing Techniques
,”
Chem. Mater.
0897-4756,
9
(
6
), pp.
1299
.
31.
Koh
,
Y. K.
,
Singer
,
S. L.
,
Kim
,
W.
,
Zide
,
J. M. O.
,
Lu
,
H.
,
Cahill
,
D. G.
,
Majumdar
,
A.
, and
Gossard
,
A. C.
, 2009, “
Comparison of the 3 Omega Method and Time-Domain Thermoreflectance for Measurements of the Cross-Plane Thermal Conductivity of Epitaxial Semiconductors
,”
J. Appl. Phys.
0021-8979,
105
(
5
), p.
054303
.
32.
Cahill
,
D. G.
, and
Pohl
,
R. O.
, 1987, “
Thermal-Conductivity of Amorphous Solids Above the Plateau
,”
Phys. Rev. B
0556-2805,
35
(
8
), pp.
4067
4073
.
33.
Okuda
,
T.
,
Nakanishi
,
K.
,
Miyasaka
,
S.
, and
Tokura
,
Y.
, 2001, “
Large Thermoelectric Response of Metallic Perovskites: Sr1−xLaxTiO3 (0⇐x⇐0.1)
,”
Phys. Rev. B
0556-2805,
63
(
11
), pp.
113104
.
34.
Shanks
,
H. R.
,
Sidles
,
P. H.
,
Maycock
,
P. D.
, and
Danielson
,
G. C.
, 1963, “
Thermal Conductivity of Silicon From 300 to 1400 Degrees K
,”
Phys. Rev.
0031-899X,
130
(
5
), pp.
1743
1748
.
35.
Abramson
,
A. R.
,
Kim
,
W. C.
,
Huxtable
,
S. T.
,
Yan
,
H. Q.
,
Wu
,
Y. Y.
,
Majumdar
,
A.
,
Tien
,
C. L.
, and
Yang
,
P. D.
, 2004, “
Fabrication and Characterization of a Nanowire/Polymer-Based Nanocomposite for a Prototype Thermoelectric Device
,”
J. Microelectromech. Syst.
1057-7157,
13
(
3
), pp.
505
513
.
36.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2005, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
0022-1481,
127
(
3
), pp.
315
322
.
You do not currently have access to this content.