This paper deals with the solution of an inverse heat conduction problem, aiming at the identification of the interface thermal contact conductance, which can be directly associated to the quality of the adhesion between layers of multilayered composite materials. The inverse problem is solved within the Bayesian framework, with a Markov chain Monte Carlo method. A total variation prior is used for the spatially distributed contact conductance. The feasibility of the approach is evaluated with simulated temperature measurements for cases with contact failures of different sizes.

References

1.
Gay
,
F.
,
Hoa
,
S.
, and
Tsai
,
S.
,
2003
,
Composite Materials Design and Application
,
CRC Press
,
Boca Raton, FL
.
2.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley Interscience
,
New York
.
3.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
,
1977
,
Solution of Ill-Posed Problems
,
Winston & Sons
,
Washington, DC
.
4.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley Interscience
,
New York
.
5.
Alifanov
,
O. M.
,
1994
,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
New York
.
6.
Woodbury
,
K.
,
2002
,
Inverse Engineering Handbook
,
CRC Press
,
Boca Raton, FL
.
7.
Kaipio
,
J.
, and
Somersalo
,
E.
,
2004
, “
Statistical and Computational Inverse Problems
,”
Applied Mathematical Sciences, Vol. 160
,
Springer-Verlag
,
New York
.
8.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor and Francis
,
New York
.
9.
Tan
,
S.
,
Fox
,
C.
, and
Nicholls
,
G.
,
2006
, Inverse Problems (Course Notes for Physics, Vol. 707),
University of Auckland
,
Auckland, New Zealand
.
10.
Orlande
,
H.
,
Fudym
,
F.
,
Maillet
,
D.
, and
Cotta
,
R.
,
2011
,
Thermal Measurements and Inverse Techniques
,
CRC Press
,
Boca Raton, FL
.
11.
Cotta
,
R. M.
,
1990
, “
Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems
,”
Numer. Heat Transfer, Part B
,
127
, pp.
217
226
.10.1080/10407799008961740
12.
Cotta
,
R. M.
,
1993
,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
13.
Cotta
,
R. M.
,
1984
, “
Benchmark Results in Computational Heat and Fluid Flow: The Integral Transform Method
,”
Int J. Heat Mass Transfer
,
37
(
Suppl 1
), pp.
381
394
.10.1016/0017-9310(94)90038-8
14.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
1997
,
Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation
,
Wiley-Interscience
,
New York
.
15.
Cotta
,
R. M.
,
1998
,
The Integral Transform Method in Thermal and Fluids Sciences and Engineering
,
Begell House
,
New York
.
16.
Cotta
,
R.
, and
Mikhailov
,
M.
,
2006
, “
Hybrid Methods and Symbolic Computations
,”
Handbook of Numerical Heat Transfer
, 2nd ed.,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
John Wiley
,
New York
, pp.
493
522
, Chap. 16.
17.
Pletcher
,
R.
, and
Anderson
,
D.
,
1997
,
Computational Fluid Mechanics and Heat Transfer
,
Taylor & Francis
,
Washington, DC
.
18.
Orlande
,
H. R. B.
,
Kolehmainen
,
V.
, and
Kaipio
,
J. P.
,
2007
, “
Reconstruction of Thermal Parameters Using a Tomographic Approach
,”
Int. J. Heat Mass Transfer
,
50
, pp.
5150
5160
.10.1016/j.ijheatmasstransfer.2007.07.015
19.
Emery
,
A. F.
,
2007
, “
Estimating Deterministic Parameters by Bayesian Inference With Emphasis on Estimating the Uncertainty of the Parameters
,”
Proceedings of the Inverse Problem, Design and Optimization Symposium
,
Miami Beach, FL
, Vol.
I
, pp.
266
272
.
20.
Mota
,
C.
,
Orlande
,
H.
,
De Carvalho
,
M.
,
Kolehmainen
,
V.
, and
Kaipio
,
J.
,
2010
, “
Bayesian Estimation of Temperature-Dependent Thermophysical Properties and Transient Boundary Heat Flux
,”
Heat Transfer Eng.
,
31
, pp.
570
580
.10.1080/01457630903425635
21.
Naveira-Cotta
,
C.
,
Orlande
,
H.
, and
Cotta
,
R.
,
2010
, “
Integral Transforms and Bayesian Inference in the Identification of Variable Thermal Conductivity in Two-Phase Dispersed Systems
,”
Numer. Heat Transfer, Part B
,
57
, pp.
173
202
.10.1080/10407791003685106
22.
Naveira-Cotta
,
C.
,
Cotta
,
R.
, and
Orlande
,
H.
,
2010
, “
Inverse Analysis of Forced Convection in Micro-Channels With Slip Flow via Integral Transforms and Bayesian Inference
,”
Int. J. Therm. Sci.
,
49
, pp.
879
888
.10.1016/j.ijthermalsci.2009.12.009
23.
Massard
,
H.
,
Fudym
,
O.
,
Orlande
,
H. R. B.
, and
Batsale
,
J. C.
,
2010
, “
Nodal Predictive Error Model and Bayesian Approach for Thermal Diffusivity and Heat Source Mapping
,”
Comptes Rendus Mécanique
,
338
, pp.
434
449
.10.1016/j.crme.2010.07.015
24.
Orlande
,
H.
,
Colaço
,
M.
, and
Dulikravich
,
G.
,
2008
, “
Approximation of the Likelihood Function in the Bayesian Technique for the Solution of Inverse Problems
,”
Inverse Prob. Sci. Eng.
,
16
, pp.
677
692
.10.1080/17415970802231677
25.
Kaipio
,
J.
, and
Fox
,
C.
,
2011
, “
The Bayesian Framework for Inverse Problems in Heat Transfer
,”
Heat Transfer Eng.
,
32
, pp.
718
753
.10.1080/01457632.2011.525137
26.
Abreu
,
L.
,
Orlande
,
H. R. B.
,
Naveira-Cotta
,
C. P.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
2011
, “
Identification of Contact Failures in Multi-Layered Composites
,” Proceedings of the
ASME
2011 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE 2011, Washington, DC, Aug. 29–31, Paper No. DETC2011–47511.10.1115/DETC2011-47511
27.
Rudin
,
L. I.
,
Osher
,
S.
, and
Fatemi
,
E.
,
1992
, “
Nonlinear Total Variation Based Noise Removal Algorithms
,”
Physica D
,
60
, pp.
259
268
.10.1016/0167-2789(92)90242-F
28.
Ozisik
,
M. N.
,
1993
,
Heat Conduction
,
McGraw-Hill
,
New York
.
29.
Nissinen
,
A.
,
Heikkinen
,
L.
, and
Kapio
,
J.
,
2008
, “
The Bayesian Approximation Error Approach for Electrical Impedance Tomography—Experimental Results
,”
Meas. Sci. Technol.
,
19
, p.
015501
.10.1088/0957-0233/19/1/015501
30.
Nissinen
,
A.
,
Heikkinen
,
L.
,
Kolehmainen
,
V.
, and
Kapio
,
J.
,
2009
, “
Compensation of Errors Due to the Discretization, Domain Truncation and Unknown Contact Impedances in Electrical Impedance Tomography
,”
Meas. Sci. Technol.
,
20
, p.
105504
.10.1088/0957-0233/20/10/105504
31.
Nissinen
,
A.
,
Kolehmainen
,
V.
, and
Kapio
,
J.
,
2011
, “
Compensation of Modeling Errors Due to the Unknown Domain Boundary in Electrical Impedance Tomography
,”
IEEE Trans. Med. Imaging
,
30
, pp.
231
242
.10.1109/TMI.2010.2073716
32.
Kolehmainen
,
V.
,
Tarvainen
,
T.
,
Arridge
,
S. R.
, and
Kaipio
,
J. P.
,
2011
, “
Marginalization of Uninteresting Distributed Parameters in Inverse Problems—Application to Diffuse Optical Tomography
,”
Int. J. Uncertainty Quantif.
,
1
, pp.
1
17
.10.1615/Int.J.UncertaintyQuantification.v1.i1.10
You do not currently have access to this content.