Heat extraction and drop impact regimes occurring when a local portion of a horizontal flat-fan air mist impinges the active surface of a Pt disk hold at Tw from ∼60 to 1200 °C are investigated. Boiling curves comprise single-phase, nucleate boiling (NB), transition boiling (TB), and film boiling (FB). Mists are generated under wide ranges of water and air flow rates, and the disk is placed at center and off-center positions along the mist footprint major axis. Conditions generate a wide spectrum of water impact flux, w, droplet diameter, dd, droplet velocity, uzs, and impingement angle. Heat flux extracted, −q, along each boiling regime correlates very well with expressions involving Reynolds, Weber, and Jakob numbers evaluated in terms of local average characteristics of free nonimpinging mists—w, volume mean diameter, d30, normal volume weighted mean velocity, uz,v—and Tw; close estimation indicates that hydrodynamic and thermal forces are well accounted. During arrival of sparse parcels visualization of mist–wall interactions, using a high speed camera aided by laser illumination, allows determination of the predominance area diagram of droplet impact regimes in terms of normal impinging Weber number, Wez, and Tw. The regimes include stick, rebound, spread, and splash; the last subclassified as fine-, crown- and jet-atomization. Arrival of parcels in close succession is ubiquitous causing rapid surface flooding and leading to formation of discontinuous well agitated thick liquid films, which interacts longer with the surface than drops in sparse parcels, acting as heat sinks for longer periods of time.

References

1.
Mudawar
,
I.
, and
Valentine
,
W. S.
,
1989
, “
Determination of the Local Quench Curve for Spray-Cooled Metallic Surfaces
,”
J. Heat Treat.
,
7
(
2
), pp.
107
121
.
2.
Graham
,
K. M.
, and
Ramadhyani
,
S.
,
1996
, “
Experimental and Theoretical Studies of Mist Jet Impingement Cooling
,”
ASME J. Heat Transfer
,
118
(
2
), pp.
343
349
.
3.
Jia
,
W.
, and
Qiu
,
H.-H.
,
2003
, “
Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling
,”
Exp. Therm. Fluid Sci.
,
27
(
7
), pp.
829
838
.
4.
Estes
,
K. A.
, and
Mudawar
,
I.
,
1995
, “
Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
2985
2996
.
5.
Chen
,
R.-H.
,
Chow
,
L. C.
, and
Navedo
,
J. E.
,
2002
, “
Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
4033
4043
.
6.
Schmidt
,
J.
, and
Boye
,
H.
,
2001
, “
Influence of Velocity and Size of the Droplets on the Heat Transfer in Spray Cooling
,”
Chem. Eng. Technol.
,
24
(
3
), pp.
255
260
.
7.
Hernández-Bocanegra
,
C. A.
,
Castillejos
,
E. A. H.
,
Zhou
,
X.
, and
Thomas
,
B. G.
,
2013
, “
Measurement of Heat Flux in Dense Air-Mist Cooling—Part I: A Novel Steady-State Technique
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
147
160
.
8.
Huerta
,
L. M. E.
,
Mejía
,
G. M. E.
, and
Castillejos
,
E. A. H.
,
2016
, “
Heat Transfer and Observation of Droplet-Surface Interactions During Air-Mist Cooling at CSP Secondary System Temperatures
,”
Metall. Mat. Trans. B
,
47
(
2
), pp.
1409
1426
.
9.
Hernández-Bocanegra
,
C. A.
,
Castillejos
,
E. A. H.
,
Zhou
,
X.
, and
Thomas
,
B. G.
,
2013
, “
Measurement of Heat Flux in Dense Air-Mist Cooling—Part II: The Influence of Mist Characteristics on Steady-State Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
161
173
.
10.
Castillejos
,
E. A. H.
,
Herrera
,
M. A.
,
Hernández
,
C. I.
, and
Gutiérrez
,
M. E. P.
,
2005
, “
Practical Productivity Gains—Towards a Better Understanding of Air-Mist Cooling in Thin Slab Continuous Casting
,”
Third International Congress of Steelmaking
,
Charlotte, NC, May 9–12, pp.
881
890
.
11.
Castillejos
,
E. A. H.
,
2011
, “
Steel Continuous Casting Secondary Cooling—Aims, Air-Mist Nozzles and Laboratory Characterization
,”
The Roderick Guthrie Honorary Symposium
on Process Metallurgy, Montreal, QC, Canada, June 6–9, pp.
397
405
.
12.
Montes
,
R. J. J.
,
Castillejos
,
E. A. H.
,
Gutiérrez
,
M. E. P.
, and
Herrera
,
G. M. A.
,
2008
, “
Effect of the Operating Conditions of Air-Mists Nozzles on the Thermal Evolution of Continuously Cast Thin Slabs
,”
Can. Metall. Q.
,
47
(
2
), pp.
187
204
.
13.
Labergue
,
A.
,
Gradeck
,
M.
, and
Lemoine
,
F.
,
2016
, “
Experimental Investigation of Spray Impingement Hydrodynamic on a Hot Surface at High Flow Rates Using Phase Doppler Analysis and Infrared Thermography
,”
Int. J. Heat Mass Transfer
,
100
, pp.
65
78
.
14.
Guo
,
R.
,
Wu
,
J.
,
Fan
,
H.
, and
Zhan
,
X.
,
2016
, “
The Effects of Spray Characteristics on Heat Transfer During Spray Quenching of Aluminum Alloy 2024
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
211
220
.
15.
Dou
,
R.
,
Wen
,
Z.
, and
Zhou
,
G.
,
2015
, “
Heat Transfer Characteristics of Water Spray Impinging on High Temperature Stainless Steel Plate With Finite Thickness
,”
Int. J. Heat Mass Transfer
,
90
, pp.
376
387
.
16.
Puschmann
,
F.
, and
Specht
,
E.
,
2004
, “
Transient Measurement of Heat Transfer in Metal Quenching With Atomized Sprays
,”
Exp. Therm. Fluid Sci.
,
28
(
6
), pp.
607
615
.
17.
Al-Ahmadi
,
H. M.
, and
Yao
,
S. C.
,
2008
, “
Spray Cooling of High Temperature Metals Using High Mass Flux Industrial Nozzles
,”
Exp. Heat Transfer
,
21
(
1
), pp.
38
54
.
18.
Sivakumar
,
D.
, and
Tropea
,
C.
,
2002
, “
Splashing Impact of a Spray Onto a Liquid Film
,”
Phys. Fluids
,
14
(
12
), pp.
L85
L88
.
19.
De León B
,
M.
, and
Castillejos E
,
A. H.
,
2015
, “
Physical and Mathematical Modeling of Thin Steel Slab Continuous Casting Secondary Cooling Zone Air-Mist Impingement
,”
Metall. Mater. Trans. B
,
46
(
5
), pp.
2028
2048
.
20.
Kalantari
,
D.
, and
Tropea
,
C.
,
2007
, “
Spray Impact Onto Flat and Rigid Walls: Empirical Characterization and Modelling
,”
Int. J. Multiphase Flow
,
33
(
5
), pp.
525
544
.
21.
Panão
,
M. R. O.
, and
Moreira
,
A. L. N.
,
2004
, “
Experimental Study of the Flow Regimes Resulting From the Impact of an Intermittent Gasoline Spray
,”
Exp. Fluids
,
37
(
6
), pp.
834
855
.
22.
Minchaca M
,
J. I.
, and
Castillejos E
,
A. H.
,
2011
, “
Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles
,”
Metall. Mater. Trans. B
,
42
(
3
), pp.
500
515
.
23.
Castanet
,
G.
,
Liénart
,
T.
, and
Lemoine
,
F.
,
2009
, “
Dynamics and Temperature of Droplets Impacting Onto a Heated Wall
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
670
679
.
24.
Dunand
,
P.
,
Castanet
,
G.
,
Gradeck
,
M.
,
Maillet
,
D.
, and
Lemoine
,
F.
,
2013
, “
Energy Balance of Droplets Impinging Onto a Wall Heated Above the Leidenfrost Temperature
,”
Int. J. Heat Fluid Flow
,
44
, pp.
170
180
.
25.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
,
1997
, “
Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface
,”
Int. J. Heat Mass Transfer
,
40
(
2
), pp.
247
267
.
26.
Yao
,
S. C.
, and
Cai
,
K. Y.
,
1988
, “
The Dynamics and Leidenfrost Temperature of Drops Impacting on a Hot Surface at Small Angles
,”
Exp. Therm. Fluid Sci.
,
1
(
4
), pp.
363
371
.
27.
Wachters
,
L. H. J.
, and
Westerling
,
N. A.
,
1966
, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
,
21
(
11
), pp.
1047
1056
.
28.
Moita
,
A. S.
, and
Moreira
,
A. L. N.
,
2007
, “
Drop Impacts Onto Cold and Heated Rigid Surfaces: Morphological Comparisons, Disintegration Limits and Secondary Atomization
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
735
752
.
29.
Jung
,
J.
,
Jeong
,
S.
, and
Kim
,
H.
,
2016
, “
Investigation of Single-Droplet/Wall Collision Heat Transfer Characteristics Using Infrared Thermometry
,”
Int. J. Heat Mass Transfer
,
92
, pp.
774
783
.
30.
Fujimoto
,
H.
,
Oku
,
Y.
,
Ogihara
,
T.
, and
Takuda
,
H.
,
2010
, “
Hydrodynamics and Boiling Phenomena of Water Droplets Impinging on Hot Solid
,”
Int. J. Multiphase Flow
,
36
(
8
), pp.
620
642
.
31.
Cossali
,
G. E.
,
Marengo
,
M.
, and
Santini
,
M.
,
2008
, “
Thermally Induced Secondary Drop Atomisation by Single Drop Impact Onto Heated Surfaces
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
167
177
.
32.
Cossali
,
G. E.
,
Marengo
,
M.
, and
Santini
,
M.
,
2005
, “
Secondary Atomisation Produced by Single Drop Vertical Impacts Onto Heated Surfaces
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
937
946
.
33.
Bertola
,
V.
,
2015
, “
An Impact Regime Map for Water Drops Impacting on Heated Surfaces
,”
Int. J. Heat Mass Transfer
,
85
, pp.
430
437
.
34.
Castillejos
,
E. A. H.
,
2014
, “
INCONV.f90, Computer Program for Solving the Induction Conduction Problem in the Probe Assembly
,” CINVESTAV, Unidad Saltillo, Mexico.
35.
Park
,
S. W.
, and
Lee
,
C. S.
,
2004
, “
Macroscopic and Microscopic Characteristics of a Fuel Spray Impinged on the Wall
,”
Exp. Fluids
,
37
(
6
), pp.
745
762
.
36.
Mejía García, M. E.,
2012
, “
Aspectos de la dinámica de gotas en nieblas con alta densidad de impacto
,” M.Sc. thesis, CINVESTAV, Unidad Saltillo, Coahuila, México.
37.
Brown, D., 2009, “
Tracker Video Analysis and Modeling Tool
,” Tracker, CA, accessed Dec. 27, 2017, http://physlets.org/tracker/
38.
ImageJ
, 2014, “
National Institute of Health, Image Processing and Analysis in JAVA
,” Wayne Rasband, NIH Image, Bethesda, MD, accessed Dec. 27, 2017, http://imagej.nih.gov/ij/
39.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(1), pp.
3
8
.
40.
Toda
,
S.
,
1972
, “
A Study of Mist Cooling (2nd Report: Theory of Mist Cooling and Its Fundamental Experiments)
,”
Heat Transfer Jpn. Res.
,
37
(
1
), pp.
1
44
.
41.
Minchaca
,
M. J. I.
,
Castillejos
,
E. A. H.
, and
Murphy
,
S.
,
2010
, “
Fluid Dynamics of Thin Steel Slab Continuous Casting Secondary Cooling Zone Air Mists
,”
ILASS-Americas 22nd Annual Conference on Liquid Atomization and Spray Systems (ILASS)
, Cincinnati, OH, May 16–19, pp.
1
17
.
42.
Rein
,
M.
,
1993
, “
Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces
,”
Fluid Dyn. Res.
,
12
(
2
), pp.
61
93
.
43.
Mezbah
,
U.
,
Yoshida
,
S.
,
Someya
,
S.
, and
Koji
,
O.
,
2007
, “
Visualization of Transient Interaction Phenomena Between Droplets and Hot Walls Around Leidenfrost Temperature for SUS304
,”
International Conference on Mechanical Engineering
, Dhaka, Bangladesh, Dec. 29–31, pp.
1
5
.
You do not currently have access to this content.