This paper presents corrections for existing hydrodynamic instability-based critical heat flux (CHF) models in pool boiling by taking into account the effect of the viscosity, geometry and size of the liquid–vapor interface. Based on the existing literature, the Kelvin–Helmholtz (KH) theory, used by the most commonly adopted CHF models, can lead to noticeable errors when predicting the instability conditions. The errors are mainly due to the inaccuracy of the inviscid flow assumptions and the oversimplification of the interface geometry. In addition, the literature suggests the most unstable condition predicted by the viscous correction for viscous potential flow (VCVPF) theory for the cylindrical interfaces best match the observed air column breakup conditions in water. In this paper, the most unstable instability conditions predicted by the VCVPF theory are used to correct the existing CHF models. The comparison between the existing and corrected CHF models suggests that the corrected models always predict a higher CHF value. In addition, the corrected Zuber model predicts similar CHF value to the Lienhard and Dhir model. The comparison with experimental data suggests that the correction to the Zuber model can increase its prediction accuracy in most cases, but not necessary for the Lienhard and Dhir model. When compared to experimental CHF data for boiling cryogens at different pressures, the corrected CHF models are consistently more accurate than the original CHF models.

References

1.
Fang
,
X.
, and
Dong
,
A.
,
2016
, “
A Comparative Study of Correlations of Critical Heat Flux of Pool Boiling
,”
J. Nucl. Sci. Technol.
,
3131
(
1
), pp.
1
12
.
2.
Zhao
,
H.
, and
Williams
,
A.
,
2018
, “
Predicting the Critical Heat Flux in Pool Boiling Based on Hydrodynamic Instability Induced Irreversible Hot Spots
,”
Int. J. Multiphase Flow
, in press.
3.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase Change Phenomena
,
CRC Press
, Boca Raton, FL.
4.
Funada
,
T.
, and
Joseph
,
D. D.
,
2001
, “
Viscous Potential Flow Analysis of Kelvin–Helmholtz Instability in a Channel
,”
J. Fluid Mech.
,
445
, pp.
263
283
.
5.
Joseph
,
D. D.
, and
Wang
,
J.
,
2004
, “
The Dissipation Approximation and Viscous Potential Flow
,”
J. Fluid Mech.
,
505
, pp.
365
377
.
6.
Awasthi
,
M. K.
,
Asthana
,
R.
, and
Agrawal
,
G. S.
,
2012
, “
Pressure Corrections for the Potential Flow Analysis of Kelvin–Helmholtz Instability With Heat and Mass Transfer
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2345
2352
.
7.
Zhao
,
H.
, and
Bhabra
,
B.
,
2018
, “
Experimental Investigation of the Kelvin-Helmholtz Instabilities of Cylindrical Gas Columns in Viscous Fluids
,”
Int. J. Multiphase Flow
, in press.
8.
Kutateladze
,
S. S.
,
1950
, “
Hydromechanical Model of Heat Transfer Crisis in Pool Liquid Boiling
,”
J. Tech. Phys.
,
20
(
11
), pp. 1389–1392.
9.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer (Thesis)
,” United States Atomic Energy Commission, Washington DC, Technical Report No. AECU-4439.
10.
Dhir
,
K.
, and
Lienhard
,
H.
,
1973
, “
Extended Hydrodynamic Theory of the Peak and Minimum Pool Boiling Heat Fluxes
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-2270
.https://ntrs.nasa.gov/search.jsp?R=19730019076
11.
El-Genk
,
M. S.
, and
Guo
,
Z.
,
1993
, “
Transient Boiling From Inclined and Downward-Facing Surfaces in a Saturated Pool
,”
Int. J. Ref.
,
16
(
6
), pp. 414–422.
12.
Brusstar
,
Matthew
,
J.
, and
Merte
,
H.
,
1994
, “
Effects of Buoyancy on the Critical Heat Flux in Forced Convection
,”
J. Thermophys. Heat Transfer.
,
8
(
2
), pp. 322–328.https://deepblue.lib.umich.edu/bitstream/handle/2027.42/77216/AIAA-541-609.pdf?sequence=1&isAllowed=y
13.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.
14.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
389
399
.
15.
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2012
, “
Visualization Study of Critical Heat Flux Mechanism on a Small and Horizontal Copper Heater
,”
Int. J. Multiphase Flow
,
41
, pp.
1
12
.
16.
Chu
,
I. C.
,
No
,
H. C.
, and
Song
,
C. H.
,
2013
, “
Visualization of Boiling Structure and Critical Heat Flux Phenomenon for a Narrow Heating Surface in a Horizontal Pool of Saturated Water
,”
Int. J. Heat Mass Transfer
,
62
(
1
), pp.
142
152
.
17.
Chu
,
I. C.
,
No
,
H. C.
,
Song
,
C. H.
, and
Euh
,
D. J.
,
2014
, “
Observation of Critical Heat Flux Mechanism in Horizontal Pool Boiling of Saturated Water
,”
Nucl. Eng. Des.
,
279
, pp.
189
199
.
18.
Bailey
,
W.
,
Young
,
E.
,
Beduz
,
C.
, and
Yang
,
Y.
,
2006
, “
Pool Boiling Study on Candidature of Pentane, Methanol and Water for Near Room Temperature Cooling
,”
Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 2, pp.
599
603
.
19.
Rohsenow
,
W. M.
,
1951
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,” Massachusetts Institute of Technology, Cambridge, MA, Technical Report No.
5
.https://dspace.mit.edu/bitstream/handle/1721.1/61431/HTL_TR_1951_005.pdf?sequence=1
20.
Sakashita
,
H.
,
Ono
,
A.
, and
Nakabayashi
,
Y.
,
2010
, “
Measurements of Critical Heat Flux and Liquid-Vapor Structure Near the Heating Surface in Pool Boiling of 2-Propanol/Water Mixtures
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1554
1562
.
21.
Wiebe
,
J. R.
, and
Judd
,
R. L.
,
1971
, “
Superheat Layer Thickness Measurements in Saturated and Subcooled Nucleate Boiling
,”
ASME J. Heat Transfer
,
93
(
4
), pp.
455
461
.
22.
Davis
,
E. J.
, and
Anderson
,
G. H.
,
1966
, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J.
,
12
(
4
), pp.
774
780
.
23.
Asthana
,
R.
,
Awasthi
,
M. K.
,
Agrawal
,
G. S. S.
,
Asthana
,
R.
,
Agrawal
,
G. S. S.
,
Awasthi
,
M. K.
, and
Agrawal
,
G. S. S.
,
2014
, “
Viscous Correction for the Viscous Potential Flow Analysis of Kelvin-Helmholtz Instability of Cylindrical Flow With Heat and Mass Transfer
,”
Int. J. Heat Mass Transfer
,
43
(
6
), pp.
251
259
.
24.
Lee
,
D.-S.
,
2007
, “
Nonlinear Kelvin–Helmholtz Instability of Cylindrical Flow With Mass and Heat Transfer
,”
Phys. Scr.
,
76
(
1
), pp.
97
103
.
25.
Funada
,
T.
, and
Joseph
,
D. D.
,
2002
, “
Viscous Potential Flow Analysis of Capillary Instability
,”
Int. J. Multiphase Flow
,
28
(
9
), pp.
1459
1478
.
26.
Awasthi
,
M. K.
, and
Agrwal
,
G. S.
,
2011
, “
Viscous Potential Flow Analysis of Kelvin-Helmholtz Instability of Cylindrical Interface
,”
Int. J. Appl. Math. Comput.
,
3
(
2
), pp.
131
140
.
27.
Wang
,
J.
,
Joseph
,
D. D.
, and
Funada
,
T.
,
2005
, “
Viscous Contributions to the Pressure for Potential Flow Analysis of Capillary Instability of Two Viscous Fluids
,”
J. Fluid Mech.
,
522
, pp.
383
394
.
28.
Lienhard
,
H.
,
Dhir
,
V. K.
, and
Riherd
,
D.
,
1973
, “
Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,”
ASME J. Heat Transfer
, 95(
4
), pp.
477
482
.
29.
Bewilogua
,
L.
,
Knöner
,
R.
, and
Vinzelberg
,
H.
,
1975
, “
Heat Transfer in Cryogenic Liquids Under Pressure
,”
Cryogenics (Guildf).
,
15
(
3
), pp.
121
125
.
30.
Horsthemke
,
A.
, and
Schrijder
,
J. J.
,
1985
, “
The Wettability of Industrial Surfaces: Contact Angle Measurements and Thermodynamic Analysis *
,”
Chem. Eng. Process
,
19
(
5
), pp.
277
285
.
31.
Bald
,
W. B.
,
1973
, “
Cryogenic Heat Transfer Research at Oxford—Part 1: Nucleate Pool Boiling
,”
Cryogenics (Guildf).
,
13
(
8
), pp.
457
469
.
You do not currently have access to this content.