Abstract

This investigation is devoted to evaluating the thermal hydraulics behavior of sodium-based (Na) miniature heat sinks. The investigated geometrical parameters cover a range of 0.143–1 for heat sink aspect ratios, 0.267–21.7 mm for hydraulic diameters, and 600–20,000 for the Reynolds number. As the first objective in this work, two correlations are developed and proposed for Na friction factors and average Nusselt numbers in steel (SS-316) miniature heat sinks with a hydraulic diameter of less than 5 mm. Obtained correlations for Nusselt numbers and friction factors estimate the numerical results with a margin of error of 5% and 10%, respectively. The developed correlation for the average Nusselt number in Na-cooled miniature heat sinks is compared against available and reported correlations in the literature for macroscale liquid metal-cooled pipes and channels. It is revealed that the available correlations in the literature tend to significantly overestimate the Nusselt number in rectangular miniature heat sinks with a hydraulic diameter of less than 5 mm. As the second objective in this work, the developed and verified numerical model is utilized to evaluate the thermal efficiency of Na-cooled copper-based miniature heat sinks with an innovative design that includes a corrosion-resistant coating (cladding layer). The thickness of the corrosion-resistant coating varies from 0.25 mm to 4.5 mm with a thermal conductivity range of 4–17 (W/m K). The cladded heat sink aspect ratio and its hydraulic diameter vary between 0.29–1 and 2500–10,000, respectively. Two different trends are observed for the thermal efficiency of the protective cladding layer in terms of its thermal conductivity. In this class of small-scale heat sinks with the employed aspect of 0.29, a considerable thermal efficiency enhancement of the corrosion-resistant coating is obtained by increasing its thermal conductivity. However, in cladded miniature heat sinks with aspect ratios of 0.635 and 1, the thermal efficiency of the cladding layer tends to decrease as its thermal conductivity increases. A maximum of 30% enhancement in the thermal efficiency of the investigated cladded copper-based miniature heat sinks is observed compared to identical miniature heat sinks made totally out of the cladding layer material. The obtained results reveal that the copper-based cladded miniature heat sink of aspect ratio 1 provides the highest thermal efficiency among all the three investigated cladded heat sinks.

References

1.
Nadjahi
,
C.
,
Louahlia
,
H.
, and
Lemasson
,
S.
,
2018
, “
A Review of Thermal Management and Innovative Cooling Strategies for Data Center
,”
Sustainable Comput.: Inf. Syst.
,
19
, pp.
14
28
.10.1016/j.suscom.2018.05.002
2.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2014
, “
A Review of Data Center Cooling Technology, Operating Conditions and the Corresponding Low-Grade Waste Heat Recovery Opportunities
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
622
638
.10.1016/j.rser.2013.12.007
3.
Obot
,
N. T.
,
2002
, “
Toward a Better Understanding of Friction and Heat/Mass Transfer in Microchannels—A Literature Review
,”
Microscale Thermophys. Eng.
,
6
(
3
), pp.
155
173
.10.1080/10893950290053295
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
5.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Single-Phase and Two-Phase Nanofluid Heat Transfer in Macro-Channels and Micro-Channels
,”
Int. J. Heat Mass Transfer
,
136
, pp.
324
354
.10.1016/j.ijheatmasstransfer.2019.02.086
6.
Dadsetani
,
R.
,
Sheikhzade
,
G. A.
,
Goodarzi
,
M.
,
Zeeshan
,
A.
,
Ellahi
,
R.
, and
Safaei
,
M. R.
,
2021
, “
Thermal and Mechanical Design of Tangential Hybrid Microchannel and High-Conductivity Inserts for Cooling of Disk-Shaped Electronic Components
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
2125
2133
.10.1007/s10973-020-10232-w
7.
Gong
,
L.
,
Zhao
,
J.
, and
Huang
,
S.
,
2015
, “
Numerical Study on Layout of Micro-Channel Heat Sink for Thermal Management of Electronic Devices
,”
Appl. Therm. Eng.
,
88
, pp.
480
490
.10.1016/j.applthermaleng.2014.09.048
8.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
.10.1016/S0017-9310(98)00017-9
9.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer, Trans. ASME
,
127
(
1
), pp.
49
58
.10.1115/1.1839582
10.
Yue
,
C.
,
Zhang
,
Q.
,
Zhai
,
Z.
, and
Ling
,
L.
,
2018
, “
CFD Simulation on the Heat Transfer and Flow Characteristics of a Microchannel Separate Heat Pipe Under Different Filling Ratios
,”
Appl. Therm. Eng.
,
139
, pp.
25
34
.10.1016/j.applthermaleng.2018.01.011
11.
Li
,
G.
,
Diallo
,
T. M. O.
,
Akhlaghi
,
Y. G.
,
Shittu
,
S.
,
Zhao
,
X.
,
Ma
,
X.
, and
Wang
,
Y.
,
2019
, “
Simulation and Experiment on Thermal Performance of a Micro-Channel Heat Pipe Under Different Evaporator Temperatures and Tilt Angles
,”
Energy
,
179
, pp.
549
557
.10.1016/j.energy.2019.05.040
12.
Wang
,
X.
,
Wei
,
J.
,
Deng
,
Y.
,
Wu
,
Z.
, and
Sundén
,
B.
,
2018
, “
Enhancement of Loop Heat Pipe Performance With the Application of Micro/Nano Hybrid Structures
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1248
1263
.10.1016/j.ijheatmasstransfer.2018.06.138
13.
Hemmat Esfe
,
M.
,
Kamyab
,
M. H.
, and
Valadkhani
,
M.
,
2020
, “
Application of Nanofluids and Fluids in Photovoltaic Thermal System: An Updated Review
,”
Sol. Energy
,
199
, pp.
796
818
.10.1016/j.solener.2020.01.015
14.
Bahaidarah
,
H. M. S.
,
Baloch
,
A. A. B.
, and
Gandhidasan
,
P.
,
2016
, “
Uniform Cooling of Photovoltaic Panels: A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1520
1544
.10.1016/j.rser.2015.12.064
15.
Agrawal
,
S.
, and
Tiwari
,
A.
,
2011
, “
Experimental Validation of Glazed Hybrid Micro-Channel Solar Cell Thermal Tile
,”
Sol. Energy
,
85
(
11
), pp.
3046
3056
.10.1016/j.solener.2011.09.003
16.
Chen
,
H.
,
Zhang
,
H.
,
Li
,
M.
,
Liu
,
H.
, and
Huang
,
J.
,
2018
, “
Experimental Investigation of a Novel LCPV/T System With Micro-Channel Heat Pipe Array
,”
Renewable Energy
,
115
, pp.
773
782
.10.1016/j.renene.2017.08.087
17.
Paris
,
A. D.
,
Birur
,
G. C.
, and
Green
,
A. A.
,
2002
, “
Development of MEMS Microchannel Heat Sinks for Micro/Nano Spacecraft Thermal Control
,”
ASME
Paper No. IMECE2002-39293. 10.1115/IMECE2002-39293
18.
Difonzo
,
R.
,
Gajetti
,
E.
,
Savoldi
,
L.
, and
Fathi
,
N.
,
2022
, “
Assessment of Different RANS Turbulence Models in Mini-Channels for the Cooling of MW-Class Gyrotron Resonators
,”
Int. J. Heat Mass Transfer
,
193
, p.
122922
.10.1016/j.ijheatmasstransfer.2022.122922
19.
Zhang
,
X. D.
,
Li
,
X. P.
,
Zhou
,
Y. X.
,
Yang
,
J.
, and
Liu
,
J.
,
2019
, “
Vascularized Liquid Metal Cooling for Thermal Management of kW High Power Laser Diode Array
,”
Appl. Therm. Eng.
,
162
, p.
114212
.10.1016/j.applthermaleng.2019.114212
20.
Talanov
,
V. D.
, and
Ushakov
,
P. A.
,
1967
, “
Part One Heat Transfer in Round, Annular and Square Channels Study of Heat Transfer in Liquid Metals in Round Pipes
”.
21.
Lorenzin
,
N.
, and
Abánades
,
A.
,
2016
, “
A Review on the Application of Liquid Metals as Heat Transfer Fluid in Concentrated Solar Power Technologies
,”
Int. J. Hydrogen Energy
,
41
(
17
), pp.
6990
6995
.10.1016/j.ijhydene.2016.01.030
22.
Mikityuk
,
K.
,
2009
, “
Heat Transfer to Liquid Metal: Review of Data and Correlations for Tube Bundles
,”
Nucl. Eng. Des.
,
239
(
4
), pp.
680
687
.10.1016/j.nucengdes.2008.12.014
23.
Cheng
,
X.
, and
Tak
,
N. I.
,
2006
, “
Investigation on Turbulent Heat Transfer to Lead-Bismuth Eutectic Flows in Circular Tubes for Nuclear Applications
,”
Nucl. Eng. Des.
,
236
(
4
), pp.
385
393
.10.1016/j.nucengdes.2005.09.006
24.
Grötzbach
,
G.
,
2013
, “
Challenges in Low-Prandtl Number Heat Transfer Simulation and Modelling
,”
Nucl. Eng. Des.
,
264
, pp.
41
55
.10.1016/j.nucengdes.2012.09.039
25.
Aoki
,
S.
,
1963
, “
A Consideration on the Heat Transfer in Liquid Metal
,”
Bull. Tokyo Inst. Technol.
,
54
, pp.
63
73
.https://www.osti.gov/biblio/4664644
26.
Pourghasemi
,
M.
,
Fathi
,
N.
, and
Rodriguez
,
S.
,
2021
, “
Numerical Study on Flow and Heat Transfer of Water and Liquid Metals Within Micro-Scale Heat Sinks for High Heat Dissipation Rate Applications
,”
arXiv:2106.11752.
27.
Pourghasemi
,
M.
, and
Fathi
,
N.
,
2022
, “
Probing the Accuracy of Experimental Data on Nusselt Numbers Within Miniature Heat Sinks
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
11
), p.
111001
.10.1115/1.4054303
28.
El-Genk
,
M. S.
, and
Pourghasemi
,
M.
,
2019
, “
Nusselt Number and Development Length Correlations for Laminar Flows of Water and Air in Microchannels
,”
Int. J. Heat Mass Transfer
,
133
, pp.
277
294
.10.1016/j.ijheatmasstransfer.2018.12.077
29.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
30.
Pourghasemi
,
M.
, and
Fathi
,
N.
,
2022
, “
Verification Assessment of Thermal Models in Conjugate Heat Transfer Analysis of Small-Scale Heat Sinks
,”
ASME
Paper No. VVS2022-86822. 10.1115/VVS2022-86822
31.
Pourghasemi
,
M.
, and
Fathi
,
N.
,
2021
, “
Asymmetrical Heat Distribution Pattern in Miniature Heat Sinks Due to Conjugate Heat Transfer
,”
ASME
Paper No. VVS2021-65325. 10.1115/VVS2021-65325
You do not currently have access to this content.