Abstract

The list of reacting flows in porous media applications is quite long, including porous media combustion, syngas production, and fuel cells. Porous media combustion is recognized as a cutting-edge combustion technique for increasing flammability. In this process, heat is transferred from the exothermic reaction zone to the incoming reactants through porous media. This role of porous media distinguishes reacting flows in porous media from free combustion processes. Local heat transfer, such as solid conduction, solid–solid radiation, and solid–gas convection, as well as the response behavior, are affected by the topology of the porous material. Theoretical studies indicate that continuously graded porous materials can significantly enhance the performance benefits of heat transfer. However, topology design is challenging for smooth graded porous media, and thus investigations of combustion within graded porous media are still required. In this study, we constructed a porous structure of type W/P/D/G (porosity ε = 0.3–0.5, hydraulic diameter dh = 1.33–3.86 mm) using a triply periodic minimal surface (TPMS), and a computational model of the combustion reaction in porous media was established to compare the range of flame stability within different pore types. In addition, topology gradation was achieved via TPMS to modulate the heat transfer to ensure the dependable functioning of premixed flames and improved heat recirculation. Heat transfer in the graded TPMS-based porous structure was analyzed numerically. The conclusions obtained from this study can effectively address the aforementioned challenges related to porous media burner design.

References

1.
Wasinarom
,
K.
,
Charoensuk
,
J.
, and
Lilavivat
,
V.
,
2019
, “
Non-Equilibrium Numerical Modeling for Combustion of LPG Within Porous Media
,”
Int. J. Heat Mass Transfer
,
143
, p.
118551
.10.1016/j.ijheatmasstransfer.2019.118551
2.
Dai
,
H. M.
,
Zhu
,
H. W.
,
Dai
,
H. C.
,
Song
,
Z. W.
,
Wang
,
Z. Q.
,
He
,
S.
, and
Wang
,
X. Y.
,
2021
, “
Syngas Production by Methane-Rich Combustion in a Divergent Burner of Porous Media
,”
Int. J. Hydrogen Energy
,
46
(
45
), pp.
23279
23291
.10.1016/j.ijhydene.2021.04.160
3.
Sobhani
,
S.
,
Legg
,
J.
,
Bartz
,
D. F.
,
Kojima
,
J. J.
,
Chang
,
C. T.
,
Sullivan
,
J. D.
,
Moder
,
J. P.
, and
Ihme
,
M.
,
2020
, “
Experimental Investigation of Lean Premixed Pre-Vaporized Liquid-Fuel Combustion in Porous Media Burners at Elevated Pressures up to 20 Bar
,”
Combust. Flame
,
212
, pp.
123
134
.10.1016/j.combustflame.2019.10.033
4.
Bani
,
S.
,
Pan
,
J.
,
Tang
,
A.
,
Lu
,
Q.
, and
Zhang
,
Y.
,
2018
, “
Micro Combustion in a Porous Media for Thermophotovoltaic Power Generation
,”
Appl. Therm. Eng.
,
129
, pp.
596
605
.10.1016/j.applthermaleng.2017.10.024
5.
Weinberg
,
F. J.
,
1971
, “
Combustion Temperatures: The Future?
,”
Nature
,
233
(
5317
), pp.
239
241
.10.1038/233239a0
6.
Lloyd
,
S. A.
, and
Weinberg
,
F. J.
,
1974
, “
A Burner for Mixtures of Very Low Heat Content
,”
Nature
,
251
(
5470
), pp.
47
49
.10.1038/251047a0
7.
Takeno
,
T.
, and
Hase
,
K.
,
1983
, “
Effects of Solid Length and Heat Loss on an Excess Enthalpy Flame
,”
Combust. Sci. Technol.
,
31
(
3–4
), pp.
207
215
.10.1080/00102208308923642
8.
Trimis
,
D.
, and
Durst
,
F.
,
1996
, “
Combustion in a Porous Medium-Advances and Applications
,”
Combust. Sci. Technol.
,
121
(
1–6
), pp.
153
168
.10.1080/00102209608935592
9.
Mujeebu
,
M. A.
,
Abdullah
,
M. Z.
,
Mohamad
,
A. A.
, and
Bakar
,
M. Z. A.
,
2010
, “
Trends in Modeling of Porous Media Combustion
,”
Prog. Energy Combust. Sci.
,
36
(
6
), pp.
627
650
.10.1016/j.pecs.2010.02.002
10.
Cheng
,
Z. L.
,
Guo
,
Z. G.
,
Fu
,
P.
,
Yang
,
J.
, and
Wang
,
Q. W.
,
2021
, “
New Insights Into the Effects of Methane and Oxygen on Heat/Mass Transfer in Reactive Porous Media
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105652
.10.1016/j.icheatmasstransfer.2021.105652
11.
Barra
,
A. J.
,
Diepvens
,
G.
,
Ellzey
,
J. L.
, and
Henneke
,
M. R.
,
2003
, “
Numerical Study of the Effects of Material Properties on Flame Stabilization in a Porous Burner
,”
Combust. Flame
,
134
(
4
), pp.
369
379
.10.1016/S0010-2180(03)00125-1
12.
Barra
,
A. J.
, and
Ellzey
,
J. L.
,
2004
, “
Heat Recirculation and Heat Transfer in Porous Burners
,”
Combust. Flame
,
137
(
1–2
), pp.
230
241
.10.1016/j.combustflame.2004.02.007
13.
Hsu
,
P. F.
,
Evans
,
W. D.
, and
Howell
,
J. R.
,
1993
, “
Experimental and Numerical Study of Premixed Combustion Within Nonhomogeneous Porous Ceramics
,”
Combust. Sci. Technol.
,
90
(
1–4
), pp.
149
172
.10.1080/00102209308907608
14.
Hoda
,
S. N.
,
Nassab
,
S. A. G.
, and
Ebrahim
,
J. J.
,
2019
, “
Three Dimensional Numerical Simulation of Combustion and Heat Transfer in Porous Radiant Burners
,”
Int. J. Therm. Sci.
,
145
, p.
106024
.10.1016/j.ijthermalsci.2019.106024
15.
Mital
,
R.
,
Gore
,
J. P.
, and
Viskanta
,
R.
,
1998
, “
A Radiation Efficiency Measurement Procedure for Gas-Fired Radiant Burners
,”
Exp. Heat Transfer
,
11
(
1
), pp.
3
21
.10.1080/08916159808946551
16.
Mital
,
R.
,
Gore
,
J. P.
, and
Viskanta
,
R.
,
1995
, “
Measurements of Extinction Coefficient and Single Scattering Albedo of Reticulated Porous Ceramic at High Temperatures
,”
AIAA
Paper No. 95-2036. 10.2514/6.95-2036
17.
Leonardi
,
S. A.
,
Viskanta
,
R.
, and
Gore
,
J. P.
,
2003
, “
Analytical and Experimental Study of Combustion and Heat Transfer in Submerged Flame Metal Fiber Burners/Heaters
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
1
), pp.
118
125
.10.1115/1.1527910
18.
Mohamad
,
A. A.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
,
1994
, “
Modelling of Combustion and Heat Transfer in a Packed Bed With Embedded Coolant Tubes
,”
Int. J. Heat Mass Transfer
,
37
(
8
), pp.
1181
1191
.10.1016/0017-9310(94)90204-6
19.
Mohamad
,
A. A.
,
Viskanta
,
R.
, and
Ramadhyani
,
S.
,
1994
, “
Numerical Predictions of Combustion and Heat Transfer in a Packed-Bed With Embedded Coolant Tubes
,”
Combust. Sci. Technol.
,
96
(
4–6
), pp.
387
407
.10.1080/00102209408935363
20.
Fu
,
X.
,
Viskanta
,
R.
, and
Gore
,
J. P.
,
1998
, “
Combustion and Heat Transfer Interaction in a Pore-Scale Refractory Tube Burner
,”
J. Thermophys. Heat Transfer
,
12
(
2
), pp.
164
171
.10.2514/2.6341
21.
Kim
,
J. O.
,
Gore
,
J. P.
,
Viskanta
,
R.
, and
Zhu
,
L. X.
,
2003
, “
Prediction of Self-Absorption in Opposed Flow Diffusion and Partially Premixed Flames Using a Weighted Sum of Gray Gases Model (WSGGM)-Based Spectral Model
,”
Numer. Heat Transfer, Part A
,
44
(
4
), pp.
335
353
.10.1080/713838232
22.
Yakovlev
,
I.
, and
Zambalov
,
S.
,
2019
, “
Three-Dimensional Pore-Scale Numerical Simulation of Methane-Air Combustion in Inert Porous Media Under the Conditions of Upstream and Downstream Combustion Wave Propagation Through the Media
,”
Combust. Flame
,
209
, pp.
74
98
.10.1016/j.combustflame.2019.07.018
23.
Banerjee
,
A.
, and
Saveliev
,
A. V.
,
2018
, “
High Temperature Heat Extraction From Counterflow Porous Burner
,”
Int. J. Heat Mass Transfer
,
127
, pp.
436
443
.10.1016/j.ijheatmasstransfer.2018.08.027
24.
Song
,
F. Q.
,
Wen
,
Z.
,
Dong
,
Z. Y.
,
Wang
,
E. Y.
, and
Liu
,
X. L.
,
2019
, “
Numerical Study and Optimization of a Porous Burner With Annular Heat Recirculation
,”
Appl. Therm. Eng.
,
157
, p.
113741
.10.1016/j.applthermaleng.2019.113741
25.
Sobhani
,
S.
,
Mohaddes
,
D.
,
Boigne
,
E.
,
Muhunthan
,
P.
, and
Ihme
,
M.
,
2019
, “
Modulation of Heat Transfer for Extended Flame Stabilization in Porous Media Burners via Topology Gradation
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5697
5704
.10.1016/j.proci.2018.05.155
26.
Rickenbach
,
J. V.
,
Lucci
,
F.
,
Narayanan
,
C.
,
Eggenschwiler
,
P. D.
, and
Poulikakos
,
D.
,
2014
, “
Multi-Scale Modelling of Mass Transfer Limited Heterogeneous Reactions in Open Cell Foams
,”
Int. J. Heat Mass Transfer
,
75
, pp.
337
346
.10.1016/j.ijheatmasstransfer.2014.03.060
27.
Yao
,
Y. P.
,
Wu
,
H. Y.
, and
Liu
,
Z. Y.
,
2018
, “
Direct Simulation of Interstitial Heat Transfer Coefficient Between Paraffin and High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
3
), p.
032601
.10.1115/1.4038006
28.
Samoilenko
,
M.
,
Seers
,
P.
,
Terriault
,
P.
, and
Brailovski
,
V.
,
2019
, “
Design, Manufacture and Testing of Porous Materials With Ordered and Random Porosity: Application to Porous Medium Burners
,”
Appl. Therm. Eng.
,
158
, p.
113724
.10.1016/j.applthermaleng.2019.113724
29.
Cheng
,
Z. L.
,
Li
,
X. Y.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2021
, “
Investigations on Porous Media Customized by Triply Periodic Minimal Surface: Heat Transfer Correlations and Strength Performance
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105713
.10.1016/j.icheatmasstransfer.2021.105713
30.
Cheng
,
Z. L.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2021
, “
Morphology, Flow and Heat Transfer in Triply Periodic Minimal Surface Based Porous Structures
,”
Int. J. Heat Mass Transfer
,
170
, p.
120902
.10.1016/j.ijheatmasstransfer.2021.120902
31.
Sobhani
,
S.
,
Muhunthan
,
P.
,
Boigné
,
E.
,
Mohaddes
,
D.
, and
Ihme
,
M.
,
2021
, “
Experimental Feasibility of Tailored Porous Media Burners Enabled via Additive Manufacturing
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6713
6722
.10.1016/j.proci.2020.06.120
32.
Sobhani
,
S.
,
Allan
,
S.
,
Muhunthan
,
P.
,
Boigne
,
E.
, and
Ihme
,
M.
,
2020
, “
Additive Manufacturing of Tailored Macroporous Ceramic Structures for High‐Temperature Applications
,”
Adv. Eng. Mater.
,
22
(
8
), p.
2000158
.10.1002/adem.202000158
33.
Hsu
,
P. F.
, and
Howell
,
J. R.
,
1992
, “
Measurements of Thermal Conductivity and Optical Properties of Porous Partially Stabilized Zirconia
,”
Exp. Heat Transfer
,
5
(
4
), pp.
293
313
.10.1080/08916159208946446
34.
Fu
,
X.
,
Viskanta
,
R.
, and
Gore
,
J. P.
,
1998
, “
Measurement and Correlation of Volumetric Heat Transfer Coefficients of Cellular Ceramics
,”
Exp. Therm. Fluid Sci.
,
17
(
4
), pp.
285
293
.10.1016/S0894-1777(98)10002-X
35.
Gao
,
H. B.
,
Qu
,
Z. G.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
Experimental Study of Combustion in a Double-Layer Burner Packed With Alumina Pellets of Different Diameters
,”
Appl. Energy
,
100
, pp.
295
302
.10.1016/j.apenergy.2012.05.019
You do not currently have access to this content.