Abstract

The current study is concerned with the numerical simulation of the phase change process in a two-dimensional (2D) dual-phase-lag (DPL) bioheat model applied to nanocryosurgery. A Gaussian radial basis function (RBF) meshfree approach coupled with a Crank–Nicolson type of time discretization is employed on an irregular soft tissue domain. The simulation considers the introduction of three types of nanoparticles (NPs)—gold, alumina oxide, and iron oxide into the cryosurgical process. Temperature profiles were computed for situations both with and without the incorporation of nanoparticles, and the freezing interface was analyzed under different conditions. The results demonstrate the significant influence of nanoparticles on enhancing the freezing process, leading to a more controlled and effective cryoablation. The inclusion of nanoparticles not only accelerates the freezing front but also provides a more uniform temperature distribution within the target tissue. This study highlights the advantages of using a meshfree RBF approach in handling complex geometries, alongside the potential of nanoparticle-enhanced cryosurgery to improve clinical outcomes. These findings contribute valuable insights into the optimization of cryosurgical techniques and the development of more effective cancer treatments.

References

1.
Rubinsky
,
B.
, and
Onik
,
G.
,
1991
, “
Cryosurgery: Advances in the Application of Low Temperatures to Medicine
,”
Int. J. Refrig.
,
14
(
4
), pp.
190
199
.10.1016/0140-7007(91)90003-Y
2.
Rubinsky
,
B.
,
2000
, “
Cryosurgery
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
157
187
.10.1146/annurev.bioeng.2.1.157
3.
Izawa
,
J. I.
,
Madsen
,
L. T.
,
Scott
,
S. M.
,
Tran
,
J.-P.
,
McGuire
,
E. J.
,
Von Eschenbach
,
A. C.
, and
Pisters
,
L. L.
,
2002
, “
Salvage Cryotherapy for Recurrent Prostate Cancer After Radiotherapy: Variables Affecting Patient Outcome
,”
J. Clin. Oncol.
,
20
(
11
), pp.
2664
2671
.10.1200/JCO.2002.06.086
4.
Seifert
,
J. K.
,
Springer
,
A.
,
Baier
,
P.
, and
Junginger
,
T.
,
2005
, “
Liver Resection or Cryotherapy for Colorectal Liver Metastases: A Prospective Case Control Study
,”
Int. J. Colorectal Dis.
,
20
(
6
), pp.
507
520
.10.1007/s00384-004-0723-0
5.
Bickels
,
J.
,
Robert
,
C. K.
,
Eller
,
I.
, and
Malawer
,
M. M.
,
1999
, “
Cryosurgery in the Treatment of Bone Tumors
,”
Oper. Tech. Orthop.
,
9
(
2
), pp.
79
83
.10.1016/S1048-6666(99)80025-1
6.
Yan
,
J.-F.
, and
Liu
,
J.
,
2008
, “
Nanocryosurgery and Its Mechanisms for Enhancing Freezing Efficiency of Tumor Tissues
,”
Nanomed.: Nanotechnol., Biol. Med.
,
4
(
1
), pp.
79
87
.10.1016/j.nano.2007.11.002
7.
Dessale
,
M.
,
Mengistu
,
G.
, and
Mengist
,
H. M.
,
2022
, “
Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis
,”
Int. J. Nanomed.
,
17
, pp.
3735
3749
.10.2147/IJN.S378074
8.
Yang
,
Q.
,
Jones
,
S. W.
,
Parker
,
C. L.
,
Zamboni
,
W. C.
,
Bear
,
J. E.
, and
Lai
,
S. K.
,
2014
, “
Evading Immune Cell Uptake and Clearance Requires Peg Grafting at Densities Substantially Exceeding the Minimum for Brush Conformation
,”
Mol. Pharm.
,
11
(
4
), pp.
1250
1258
.10.1021/mp400703d
9.
Zeineldin
,
R.
, and
Syoufjy
,
J.
,
2017
, “
Cancer Nanotechnology: Opportunities for Prevention, Diagnosis, and Therapy
,”
Cancer Nanotechnol.: Methods Protoc.
,
1530
, pp.
3
12
.10.1007/978-1-4939-6646-2_1
10.
Jani
,
P.
,
Subramanian
,
S.
,
Korde
,
A.
,
Rathod
,
L.
, and
Sawant
,
K. K.
,
2020
, “
Theranostic Nanocarriers in Cancer: Dual Capabilities on a Single Platform
,”
Functional Bionanomaterials: From Biomolecules to Nanoparticles
, Springer, Cham, pp.
293
312
.10.1007/978?3?030?41464?1_13
11.
Zhang
,
L.
,
Gu
,
F.
,
Chan
,
J.
,
Wang
,
A.
,
Langer
,
R.
, and
Farokhzad
,
O.
,
2008
, “
Nanoparticles in Medicine: Therapeutic Applications and Developments
,”
Clin. Pharmacol. Ther.
,
83
(
5
), pp.
761
769
.10.1038/sj.clpt.6100400
12.
Liu
,
J.
, and
Deng
,
Z.-S.
,
2009
, “
Nano-Cryosurgery: Advances and Challenges
,”
J. Nanosci. Nanotechnol.
,
9
(
8
), pp.
4521
4542
.10.1166/jnn.2009.1264
13.
Yu
,
Q.
,
Yi
,
J.
,
Zhao
,
G.
, and
Zhang
,
Y.
,
2014
, “
Effect of Vascular Network and Nanoparticles on Heat Transfer and Intracellular Ice Formation in Tumor Tissues During Cryosurgery
,”
CryoLetters
,
35
(
2
), pp.
95
100
.https://www.ingentaconnect.com/content/cryo/cryo/2014/00000035/00000002/art00003
14.
Nishad
,
S.
, and
Bhargava
,
R.
,
2023
, “
Numerical Simulation of Phase Transfer During Cryosurgery for an Irregular Tumor Using Hybrid Approach
,”
Comput. Math. Math. Phys.
,
63
(
8
), pp.
1511
1526
.10.1134/S0965542523080122
15.
Bischof
,
J. C.
,
2000
, “
Quantitative Measurement and Prediction of Biophysical Response During Freezing in Tissues
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
257
288
.10.1146/annurev.bioeng.2.1.257
16.
Roemer
,
R. B.
,
1999
, “
Engineering Aspects of Hyperthermia Therapy
,”
Annu. Rev. Biomed. Eng.
,
1
(
1
), pp.
347
376
.10.1146/annurev.bioeng.1.1.347
17.
Diller
,
K. R.
,
1992
, “
Modeling of Bioheat Transfer Processes at High and Low Temperatures
,”
Advances in Heat Transfer
, Vol. 22,
Elsevier
, Boston, MA, pp.
157
357
.10.1016/S0065?2717(08)70345?9
18.
Lv
,
Y.-G.
,
Liu
,
J.
, and
Zhang
,
J.
,
2006
, “
Theoretical Evaluation of Burns to the Human Respiratory Tract Due to Inhalation of Hot Gas in the Early Stage of Fires
,”
Burns
,
32
(
4
), pp.
436
446
.10.1016/j.burns.2005.11.006
19.
Liu
,
J.
,
2007
, “
Cooling Strategies and Transport Theories for Brain Hypothermia Resuscitation
,”
Front. Energy Power Eng. China
,
1
(
1
), pp.
32
57
.10.1007/s11708-007-0004-z
20.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
21.
Cattaneo
,
C.
,
1958
, “
On a Form of the Equation of Heat Eliminating the Paradox of Instantaneous Propagation
,”
C. R.
,
247
, pp.
431
433
.
22.
Vernotte
,
P.
,
1958
, “
The Paradoxes of the Continuous Theory of the Heat Equation
,”
C. R.
,
246
, p.
3154
.
23.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro-to Micro-Scales
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
24.
Shih
,
T.-C.
,
Yuan
,
P.
,
Lin
,
W.-L.
, and
Kou
,
H.-S.
,
2007
, “
Analytical Analysis of the Pennes Bioheat Transfer Equation With Sinusoidal Heat Flux Condition on Skin Surface
,”
Med. Eng. Phys.
,
29
(
9
), pp.
946
953
.10.1016/j.medengphy.2006.10.008
25.
Verma
,
R.
, and
Kumar
,
S.
,
2022
, “
Temperature Distribution in Living Tissue With Two-Dimensional Parabolic Bioheat Model Using Radial Basis Function
,”
Applied Analysis, Computation and Mathematical Modelling in Engineering
,
Springer
, Singapore, pp.
363
374
.10.1007/978-981-19-1824-7_24
26.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2014
, “
Analytical Analysis of the Dual-Phase-Lag Model of Bioheat Transfer Equation During Transient Heating of Skin Tissue
,”
Heat Mass Transfer
,
50
(
12
), pp.
1673
1684
.10.1007/s00231-014-1373-6
27.
Ahmadikia
,
H.
,
Fazlali
,
R.
, and
Moradi
,
A.
,
2012
, “
Analytical Solution of the Parabolic and Hyperbolic Heat Transfer Equations With Constant and Transient Heat Flux Conditions on Skin Tissue
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
121
130
.10.1016/j.icheatmasstransfer.2011.09.016
28.
Liu
,
K.-C.
,
Wang
,
Y.-N.
, and
Chen
,
Y.-S.
,
2012
, “
Investigation on the Bio-Heat Transfer With the Dual-Phase-Lag Effect
,”
Int. J. Therm. Sci.
,
58
, pp.
29
35
.10.1016/j.ijthermalsci.2012.02.026
29.
Kumar
,
D.
,
Singh
,
S.
, and
Rai
,
K.
,
2016
, “
Analysis of Classical Fourier, SPL and DPL Heat Transfer Model in Biological Tissues in Presence of Metabolic and External Heat Source
,”
Heat Mass Transfer
,
52
(
6
), pp.
1089
1107
.10.1007/s00231-015-1617-0
30.
Hobiny
,
A. D.
, and
Abbas
,
I. A.
,
2018
, “
Theoretical Analysis of Thermal Damages in Skin Tissue Induced by Intense Moving Heat Source
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1011
1014
.10.1016/j.ijheatmasstransfer.2018.04.018
31.
Hobiny
,
A.
, and
Abbas
,
I.
,
2020
, “
Thermal Response of Cylindrical Tissue Induced by Laser Irradiation With Experimental Study
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
8
), pp.
4013
4023
.10.1108/HFF-10-2019-0777
32.
Verma
,
R.
, and
Kumar
,
S.
,
2020
, “
Computational Study on Constant and Sinusoidal Heating of Skin Tissue Using Radial Basis Functions
,”
Comput. Biol. Med.
,
121
, p.
103808
.10.1016/j.compbiomed.2020.103808
33.
Crank
,
J.
,
1984
,
Free and Moving Boundary Problems
,
Oxford Science Publications, Oxford University Press
,
New York
.
34.
Bischof
,
J.
,
Bastacky
,
J.
, and
Rubinsky
,
B.
,
1992
, “
An Analytical Study of Cryosurgery in the Lung
,”
ASME J. Biomech. Eng.
,
114
(
4
), pp.
467
472
.10.1115/1.2894096
35.
Lazaridis
,
A.
,
1970
, “
A Numerical Solution of the Multidimensional Solidification (or Melting) Problem
,”
Int. J. Heat Mass Transfer
,
13
(
9
), pp.
1459
1477
.10.1016/0017-9310(70)90180-8
36.
Shamsundar
,
N.
, and
Sparrow
,
E. M.
,
1975
, “
Analysis of Multidimensional Conduction Phase Change Via the Enthalpy Model
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
97
(
3
), pp.
333
340
.10.1115/1.3450375
37.
Kumar
,
S.
, and
Katiyar
,
V.
,
2010
, “
Mathematical Modeling of Freezing and Thawing Process in Tissues: A Porous Media Approach
,”
Int. J. Appl. Mech.
,
2
(
3
), pp.
617
633
.10.1142/S1758825110000688
38.
Ahmadikia
,
H.
, and
Moradi
,
A.
,
2012
, “
Non-Fourier Phase Change Heat Transfer in Biological Tissues During Solidification
,”
Heat Mass Transfer
,
48
(
9
), pp.
1559
1568
.10.1007/s00231-012-1002-1
39.
Singh
,
S.
, and
Kumar
,
S.
,
2014
, “
Numerical Study on Triple Layer Skin Tissue Freezing Using Dual Phase Lag Bio-Heat Model
,”
Int. J. Therm. Sci.
,
86
, pp.
12
20
.10.1016/j.ijthermalsci.2014.06.027
40.
Kumar
,
A.
,
Kumar
,
S.
,
Katiyar
,
V.
, and
Telles
,
S.
,
2017
, “
Dual Phase Lag Bio-Heat Transfer During Cryosurgery of Lung Cancer: Comparison of Three Heat Transfer Models
,”
J. Therm. Biol.
,
69
, pp.
228
237
.10.1016/j.jtherbio.2017.08.005
41.
Kumar
,
A.
,
Kumar
,
S.
,
Katiyar
,
V.
, and
Telles
,
S.
,
2017
, “
Phase Change Heat Transfer During Cryosurgery of Lung Cancer Using Hyperbolic Heat Conduction Model
,”
Comput. Biol. Med.
,
84
, pp.
20
29
.10.1016/j.compbiomed.2017.03.009
42.
Li
,
X.
,
Luo
,
P.
,
Qin
,
Q.-H.
, and
Tian
,
X.
,
2020
, “
The Phase Change Thermoelastic Analysis of Biological Tissue With Variable Thermal Properties During Cryosurgery
,”
J. Therm. Stresses
,
43
(
8
), pp.
998
1016
.10.1080/01495739.2020.1764894
43.
Deng
,
Z.-S.
, and
Liu
,
J.
,
2004
, “
Modeling of Multidimensional Freezing Problem During Cryosurgery by the Dual Reciprocity Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
28
(
2
), pp.
97
108
.10.1016/S0955-7997(03)00128-0
44.
Kansa
,
E. J.
,
1990
, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid-Dynamics—I Surface Approximations and Partial Derivative Estimates
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
127
145
.10.1016/0898-1221(90)90270-T
45.
Kansa
,
E. J.
,
1990
, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid-Dynamics—II Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
147
161
.10.1016/0898-1221(90)90271-K
46.
Sakariya
,
H.
, and
Kumar
,
S.
,
2024
, “
Numerical Simulation of the Time Fractional Gray-Scott Model on 2D Space Domains Using Radial Basis Functions
,”
J. Math. Chem.
,
62
(
4
), pp.
836
864
.10.1007/s10910-023-01571-8
47.
Cao
,
L.
,
Qin
,
Q.-H.
, and
Zhao
,
N.
,
2010
, “
An RBF–MFS Model for Analysing Thermal Behaviour of Skin Tissues
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1298
1307
.10.1016/j.ijheatmasstransfer.2009.12.036
48.
Jamil
,
M.
, and
Ng
,
E.
,
2013
, “
Evaluation of Meshless Radial Basis Collocation Method (RBCM) for Heterogeneous Conduction and Simulation of Temperature Inside the Biological Tissues
,”
Int. J. Therm. Sci.
,
68
, pp.
42
52
.10.1016/j.ijthermalsci.2013.01.007
49.
Fu
,
Z.-J.
,
Xi
,
Q.
,
Ling
,
L.
, and
Cao
,
C.-Y.
,
2017
, “
Numerical Investigation on the Effect of Tumor on the Thermal Behavior Inside the Skin Tissue
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1154
1163
.10.1016/j.ijheatmasstransfer.2016.11.109
50.
Verma
,
R.
, and
Kumar
,
S.
,
2022
, “
Numerical Study on Heat Distribution in Biological Tissues Based on Three-Phase Lag Bioheat Model
,”
Palestine J. Math.
,
11
(III), pp.
1
11
.https://pjm.ppu.edu/paper/1174?numerical?study?heat?distribution?biological?tissues?based?three?phase?lag?bioheat?model
51.
Verma
,
R.
, and
Kumar
,
S.
,
2021
, “
Computational Study on Skin Tissue Freezing Using Three-Phase Lag Bioheat Model
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
11
), p.
111201
.10.1115/1.4051764
52.
Verma
,
R.
, and
Kumar
,
S.
,
2023
, “
Computational Study on 2D Three-Phase Lag Bioheat Model During Cryosurgery Using RBF Meshfree Method
,”
J. Therm. Biol.
,
114
, p.
103575
.10.1016/j.jtherbio.2023.103575
53.
Murshed
,
S.
,
Leong
,
K.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
54.
Kansa
,
E.
, and
Hon
,
Y.
,
2000
, “
Circumventing the Ill-Conditioning Problem With Multiquadric Radial Basis Functions: Applications to Elliptic Partial Differential Equations
,”
Comput. Math. Appl.
,
39
(
7–8
), pp.
123
137
.10.1016/S0898-1221(00)00071-7
55.
Hardy
,
R. L.
,
1990
, “
Theory and Applications of the Multiquadric-Biharmonic Method 20 Years of Discovery 1968–1988
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
163
208
.10.1016/0898-1221(90)90272-L
56.
Alexiades
,
V.
, and
Sololmon
,
A.
,
1981
,
Mathematical Modelling of Melting and Freezing Processes
,
Hemisphere Publishing Corporation
,
Washington, DC
.
57.
Hou
,
Y.
,
Sun
,
Z.
,
Rao
,
W.
, and
Liu
,
J.
,
2018
, “
Nanoparticle-Mediated Cryosurgery for Tumor Therapy
,”
Nanomed.: Nanotechnol., Biol. Med.
,
14
(
2
), pp.
493
506
.10.1016/j.nano.2017.11.018
58.
Xu
,
F.
,
Seffen
,
K.
, and
Lu
,
T.
,
2008
, “
Non-Fourier Analysis of Skin Biothermomechanics
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2237
2259
.10.1016/j.ijheatmasstransfer.2007.10.024
59.
Vedavarz
,
A.
,
Kumar
,
S.
, and
Moallemi
,
M. K.
,
1994
, “
Significance of Non-Fourier Heat Waves in Conduction
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
116
(
1
), pp.
221
224
.10.1115/1.2910859
60.
Brazhnikov
,
A.
,
1975
, “
One Engineering Method of Calculating Heat Conduction Processes
,”
Inzh. Fiz. Zh.
,
28
(
4
), p.
677
.
61.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
3
), pp.
555
560
.10.1115/1.2910422
62.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
63.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
,
2003
, “
Experiment and Analysis for Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
,
42
(
6
), pp.
541
552
.10.1016/S1290-0729(03)00020-6
You do not currently have access to this content.