Abstract

The inherent low stiffness in soft robots makes them preferable for working in close proximity to humans. However, having this low stiffness creates challenges when operating in terms of control and sensitivity to disturbances. To alleviate this issue, soft robots often have built-in stiffness tuning mechanisms that allow for controlled increases in stiffness. Additionally, redundant pneumatic manipulators can utilize antagonistic pressure to achieve identical positions under increased stiffness. In this paper, we develop a model to predict the stiffness and configuration of a pneumatic soft manipulator under different pressure inputs and external forces. The model is developed based on the physical characteristics of a soft manipulator while enabling efficient parameter estimation and computation. The efficacy of the modeling approach is supported via experimental results.

References

1.
Park
,
W.
,
Lee
,
D.
, and
Bae
,
J.
,
2022
, “
A Hybrid Jamming Structure Combining Granules and a Chain Structure for Robotic Applications
,”
Soft Rob.
,
9
(
4
), pp.
669
679
.
2.
Gillespie
,
M. T.
,
Best
,
C. M.
, and
Killpack
,
M. D.
,
2016
, “
Simultaneous Position and Stiffness Control for an Inflatable Soft Robot
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
,
pp. 1095–1101
.
3.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
4.
Fairchild
,
P. R.
,
Srivastava
,
V.
, and
Tan
,
X.
,
2021
, “
Efficient Path Planning of Soft Robotic Arms in the Presence of Obstacles
,”
Modeling, Estimation and Control Conference
,
Austin, TX
,
Oct. 24–27
, pp.
586
591
.
5.
Mei
,
Y.
,
Fairchild
,
P.
,
Srivastava
,
V.
,
Cao
,
C.
, and
Tan
,
X.
,
2023
, “
Simultaneous Motion and Stiffness Control for Soft Pneumatic Manipulators Based on a Lagrangian-Based Dynamic Model
,”
American Control Conference (ACC)
,
San Diego, CA
,
May 31–June 2
, pp.
145
152
.
6.
Zhang
,
B.
,
Chen
,
J.
,
Ma
,
X.
,
Wu
,
Y.
,
Zhang
,
X.
, and
Liao
,
H.
,
2022
, “
Pneumatic System Capable of Supplying Programmable Pressure States for Soft Robots
,”
Soft Rob.
,
9
(
5
), pp.
1001
1013
.
7.
Kan
,
Z.
,
Pang
,
C.
,
Zhang
,
Y.
,
Yang
,
Y.
, and
Wang
,
M. Y.
,
2022
, “
Soft Actuator With Programmable Design: Modeling, Prototyping, and Applications
,”
Soft Rob.
,
9
(
5
), pp.
907
925
.
8.
Lau
,
J. H.
,
1993
, “
Closed-Form Solutions for the Large Deflections of Curved Optical Glass Fibers Under Combined Loads
,”
ASME J. Electron. Packag.
,
115
(
3
), pp.
337
339
.
9.
Nallathambi
,
A. K.
,
Lakshmana Rao
,
C.
, and
Srinivasan
,
S. M.
,
2010
, “
Large Deflection of Constant Curvature Cantilever Beam Under Follower Load
,”
Int. J. Mech. Sci.
,
52
(
3
), pp.
440
445
.
10.
Veldman
,
S. L.
,
Bergsma
,
O. K.
, and
Beukers
,
A.
,
2005
, “
Bending of Anisotropic Inflated Cylindrical Beams
,”
Thin-Walled Struct.
,
43
(
3
), pp.
461
475
.
11.
Doumit
,
M.
, and
Leclair
,
J.
,
2017
, “
Development and Testing of Stiffness Model for Pneumatic Artificial Muscle
,”
Int. J. Mech. Sci.
,
120
(
1
), pp.
30
41
.
12.
Bishop-Moser
,
J.
,
Krishnan
,
G.
, and
Kota
,
S.
,
2013
, “
Force and Moment Generation of Fiber-Reinforced Pneumatic Soft Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
4460
4465
.
13.
Chellattoan
,
R.
, and
Lubineau
,
G.
,
2022
, “
A Stretchable Fiber With Tunable Stiffness for Programmable Shape Change of Soft Robots
,”
Soft Rob.
,
9
(
6
), pp.
1052
1061
.
14.
Ghalati
,
M. H. N.
,
Ghafarirad
,
H.
,
Suratgar
,
A. A.
,
Zareinejad
,
M.
, and
Ahmadi-Pajouh
,
M. A.
,
2022
, “
Static Modeling of Soft Reinforced Bending Actuator Considering External Force Constraints
,”
Soft Rob.
,
9
(
4
), pp.
778
787
.
15.
Boyer
,
F.
,
Lebastard
,
V.
,
Candelier
,
F.
, and
Renda
,
F.
,
2021
, “
Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach
,”
IEEE Trans. Rob.
,
37
(
3
), pp.
847
863
.
16.
Kim
,
D.
,
Park
,
M.
, and
Park
,
Y.-L.
,
2021
, “
Probabilistic Modeling and Bayesian Filtering for Improved State Estimation for Soft Robots
,”
IEEE Trans. Rob.
,
37
(
5
), pp.
1728
1741
.
17.
Loo
,
J. Y.
,
Ding
,
Z. Y.
,
Baskaran
,
V. M.
,
Nurzaman
,
S. G.
, and
Tan
,
C. P.
,
2022
, “
Robust Multimodal Indirect Sensing for Soft Robots Via Neural Network-Aided Filter-Based Estimation
,”
Soft Rob.
,
9
(
3
), pp.
591
612
.
18.
Bruder
,
D.
,
Gillespie
,
B.
,
Remy
,
D. C.
, and
Vasudevan
,
R.
,
2019
, “
Modeling and Control of Soft Robots Using the Koopman Operator and Model Predictive Control
,”
Robotics: Science and Systems
,
Freiburg im Breisgau, Germany
,
June 22–26
.
19.
Bruder
,
D.
,
Fu
,
X.
,
Gillespie
,
B. R.
,
Remy
,
D. C.
, and
Vasudevan
,
R.
,
2021
, “
Koopman-Based Control of a Soft Continuum Manipulator Under Variable Loading Conditions
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
6852
6859
.
20.
Jiang
,
P.
,
Yang
,
Y.
,
Chen
,
M. Z. Q.
, and
Chen
,
Y.
,
2019
, “
A Variable Stiffness Gripper Based on Differential Drive Particle Jamming
,”
Bioinspir. Biomim.
,
14
(
3
), p.
036009
.
21.
Li
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Wei
,
Y.
,
2017
, “
Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
446
455
.
22.
Bell
,
M. A.
,
Becker
,
K. P.
, and
Wood
,
R. J.
,
2022
, “
Injection Molding of Soft Robots
,”
Adv. Mater. Technol.
,
7
(
1
), p.
2100605
.
You do not currently have access to this content.