The feasibility of laser-assisted machining (LAM) and its potential to significantly reduce fabrication costs and improve product quality have been shown experimentally for various ceramic materials. However, no systematical investigation has been performed to expand LAMs capability to parts with complex features, although such capability is essential for industrial applications. This paper presents a transient, three-dimensional thermal model developed for LAM of workpieces with complex geometric features and its validation by in-process surface temperature measurements with an infrared camera. It is shown that the LAM experiments designed based on the predictions by the thermal model successfully produced silicon nitride parts with complex features, thus demonstrating the capabilities of LAM in fabricating ceramic parts suitable for industrial implementation.

1.
Abraham
,
T.
, 1999, “
U.S. Advanced Ceramics Industry—Status and Market Projections
,”
Ind. Ceram.
1121-7588,
19
(
2
), pp.
94
96
.
2.
Sinhoff
,
D.-I. V.
,
Schmidt
,
D.-I. S.
, and
Bausch
,
D.-I. S.
, 2001, “
Machining Components Made of Advanced Ceramics: Prospects and Trends
,”
CFI, Ceram. Forum Int.
0173-9913,
78
(
6
) pp.
E12
E18
.
3.
Klocke
,
F.
, and
Bergs
,
T.
, 1997, “
Laser-Assisted Turning of Advanced Ceramics
,” Rapid Prototyping and Flexible Manufacturing,
Proc. SPIE
0277-786X,
3102
, pp.
120
130
.
4.
Lei
,
S.
,
Shin
,
Y.
, and
Incropera
,
F.
, 2001, “
Experimental Investigation of Thermo-Mechanical Characteristics in Laser-Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
639
616
.
5.
Rebro
,
P.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2002, “
Laser-Assisted Machining of Reaction Sintered Mullite Ceramics
,” Transactions ASME,
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
875
885
.
6.
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
,
Tian
,
Y.
, and
Incropera
,
F. P.
, 2004, “
Laser-Assisted Machining of Magnesia-Partially Stabilized Zirconia
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
42
51
.
7.
Rozzi
,
J. C.
,
Pfefferkorn
,
F. E.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
, 2000, “
Transient, Three-Dimensional Heat Transfer Model for the Laser-Assisted Machining of Silicon Nitride: I. Comparison of Predictions with Measured Surface Temperature Histories
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1409
1424
.
8.
Pfefferkorn
,
F. E.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
, 2005, “
Heat Transfer Model of Semi-Transparent Ceramics Undergoing Laser-Assisted Machining
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
10
), pp.
1999
2012
.
9.
Rebro
,
P. A.
,
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2002, “
Comparative Assessment of Laser-Assisted Machining for Various Ceramics
,”
Trans. NAMRI/SME
1047-3025,
30
, pp.
153
160
.
10.
Pfefferkorn
,
F. E.
,
Rozzi
,
J. C.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
, 1997, “
Surface Temperature Measurement in Laser-Assisted Machining Processes
,”
Exp. Heat Transfer
0891-6152,
10
, pp.
291
313
.
11.
Touloukian
,
Y. S.
, 1967,
Thermophysical Properties of High Temperature Solid Materials, Volume 5: Nonoxides and Their Solutions and Mixtures Including Miscellaneous Ceramic Materials
,
MacMillian
,
New York
, pp.
551
554
.
12.
Touloukian
,
Y. S.
, and
DeWitt
,
D. P.
, 1972,
Thermophysical Properties of Matter, Volume 8 Thermal Radiative Properties: Nonmetallic Solids
,
IFI/Plenum
,
New York
, pp.
1062
1068
.
13.
Sala
,
A.
, 1986,
Radiant Properties of Materials: Tables of Radiant Values for Black Body and Real Materials
,
Elsevier
,
New York
, p.
295
.
14.
Dewitt
,
D. P.
, and
Nutter
,
G. D.
, 1988,
Theory and Practice of Radiation Thermometry
,
Wiley
,
New York
, p.
174
.
15.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2004, “
On the Mechanics of the Grinding Process, Part II—Thermal Analysis of Fine Grinding
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
247
270
.
16.
Shaw
,
M. C.
, 1990, “
Temperatures in Cutting and Grinding
,”
ASME J. Heat Transfer
0022-1481,
146
, pp.
17
24
.
17.
Rowe
,
W. B.
,
Black
,
S. C.
,
Mills
,
B.
, and
Qi
,
H. S.
, 1996, “
Analysis of Grinding Temperatures by Energy Partitioning
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
210
, pp.
579
588
.
18.
Taylor
,
R. E.
,
Groot
,
H.
, and
Ferrier
,
J.
, 1998,
Thermophysical Properties of Si3N4
,
Thermophysical Properties Research Laboratory, Inc.
,
W. Lafayette, IN
, p.
2128
.
19.
Huang
,
Y.
, and
Liang
,
S. Y.
, 2003, “
Cutting Forces Modeling Considering the Effect of Tool Thermal Property—Application to CBN Hard Turning
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
307
315
.
20.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
A Conservative Numerical Scheme for the Energy Equation
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
1081
1086
.
21.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
You do not currently have access to this content.