In this paper, an on-machine Fourier five-sensor (F5S) measurement method is developed using Fourier series and sensor integration techniques to determine the straightness and yawing motion errors of a linear slide. The profile of the slide is also determined in this error separation technique. The method is an extension of the previous Fourier three-sensor (F3S) method (Fung, E. H. K., and Yang, S. M., 2000, “An Error Separation Technique for Measuring Straightness Motion Error of a Linear Slide,” Meas. Sci. Technol., 11, pp. 1515–1521; Yang, S. M., Fung, E. H. K., and Chiu, W. M., 2002, “Uncertainty Analysis of On-Machine Motion and Profile Measurement With Sensor Reading Errors,” Meas. Sci. Technol., 13, pp. 1937–1945) by including the effects of yawing error in the straightness motion error and profile measurements. The principles and operation of the F5S measurement method are described. The uncertainty analysis of the method in the presence of a sensor reading error is studied both in the frequency domain and the spatial domain. The spatial domain parameter is first optimized to yield the 12 possible sensor configurations and the final configuration is chosen based on the frequency domain parameter values. The method is evaluated by computer simulation where the simulated sensor outputs are derived from the predefined profile, straightness, and yawing motion errors. By comparing the calculated results with the input data, the F5S method is found to be superior to the F3S method as far as accuracy is concerned. The results reported in this simulation study not only confirm the feasibility of the F5S method but also encourage the author to perform an experimental study in the near future.

1.
Wu
,
S. M.
, 1977, “
Dynamic Data System: A New Modelling Approach
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
708
714
.
2.
Rao
,
S. B.
, and
Wu
,
S. M.
, 1982, “
Compensatory Control of Roundness Error in Cylindrical Chuck Grinding
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
23
28
.
3.
Kim
,
K.
, and
Eman
,
K. F.
, 1987, “
In-Process Control of Cylindricity in Boring Operation
,”
ASME J. Eng. Ind.
0022-0817,
109
, pp.
291
296
.
4.
Wu
,
S. M.
, and
Ni
,
J.
, 1988, “
New Approaches to Achieve Better Machine Performance
,”
Proceedings of the USA-Japan Symposium on Flexible Automation
,
2
, pp.
1063
1068
.
5.
Fung
,
E. H. K.
,
Cheung
,
S. M.
, and
Leung
,
T. P.
, 1998, “
The Implementation of an Error Forecasting and Compensation System for Roundness Improvement in Taper Turning
,”
Comput Ind.
0166-3615,
35
, pp.
109
120
.
6.
Fassois
,
S. D.
,
Eman
,
K. F.
, and
Wu
,
S. M.
, 1989, “
A Fast Algorithm for On-Line Machining Process Modeling and Adaptive Control
,”
ASME J. Eng. Ind.
0022-0817,
111
, pp.
133
139
.
7.
Fung
,
E. H. K.
, and
Yang
,
S. M.
, 2001, “
A New Method for Roundness Control in Taper Turning Using FCC Techniques
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
567
575
.
8.
Fung
,
E. H. K.
, and
Leung
,
S. K. S.
, 2002, “
Roundness Error Compensation in Lathe Turning Through 2-D ARMAX Model Based FCC
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
6
), pp.
902
911
.
9.
Whitehouse
,
D. J.
, 1976, “
Some Theoretical Aspects of Error Separation Techniques in Surface Metrology
,”
J. Phys. E
0022-3735,
9
, pp.
531
536
.
10.
Moore
,
D.
, 1989, “
Design Considerations in Multiprobe Roundness Measurement
,”
J. Phys. E
0022-3735,
22
, pp.
339
343
.
11.
Zhang
,
G. X.
, 1993, “
Four-Point Method of Roundness and Spindle Error Measurement
,”
CIRP Ann.
0007-8506,
42
, pp.
593
596
.
12.
Zhang
,
G. X.
,
Zhang
,
Y. H.
,
Yang
,
S. M.
, and
Li
,
Z.
, 1997, “
A Multi-Point Method for Spindle Error Motion Measurement
,”
CIRP Ann.
0007-8506,
46
, pp.
441
445
.
13.
Tanaka
,
H.
,
Tozawa
,
K.
,
Sato
,
H.
, and
O-hori
,
M.
, 1981, “
Application of New Straightness Measurement Method to Large Machine Tool
,”
CIRP Ann.
0007-8506,
30
, pp.
455
459
.
14.
Tanaka
,
H.
, and
Sato
,
H.
, 1986, “
Extensive Analysis and Development of Straightness Measurement by Sequential-Two-Point Method
,”
ASME J. Eng. Ind.
0022-0817,
108
, pp.
176
182
.
15.
Tozawa
,
K.
,
Sato
,
H.
, and
O-hori
,
M.
, 1982, “
A New Method for the Measurement of the Straightness of Machine Tools and Machined Work
,”
ASME J. Mech. Des.
1050-0472,
104
, pp.
587
592
.
16.
Kiyono
,
S.
, and
Gao
,
W.
, 1994, “
Profile Measurement of Machined Surface with a New Differential Method
,”
Precis. Eng.
0141-6359,
16
, pp.
212
218
.
17.
Li
,
C. J.
,
Li
,
S.
, and
Yu
,
J.
, 1996, “
High Resolution Error Separation Technique for In-Situ Straightness Measurement of Machine Tools and Workpiece
,”
Mechatronics
0957-4158,
6
, pp.
337
347
.
18.
Gao
,
W.
, and
Kiyono
,
S.
, 1997, “
On-Machine Profile Measurement of Machined Surface Using the Combined Three-Point Method
,”
JSME Int. J., Ser. C
1340-8062,
40
, pp.
253
259
.
19.
Gao
,
W.
, and
Kiyono
,
S.
, 1996, “
High Accuracy Profile Measurement of a Machined Surface by the Combined Method
,”
Measurement
0263-2241,
19
, pp.
55
64
.
20.
Gao
,
W.
,
Yokohama
,
J.
,
Kojima
,
H.
, and
Kiyono
,
S.
, 2002, “
Precision Measurement of Cylinder Straightness Using a Scanning Multi-Probe System
,”
Precis. Eng.
0141-6359,
26
, pp.
279
288
.
21.
Von Bieren
,
K.
, 1983, “
Interferometry of Wave Fronts Reflected Off Conical Surfaces
,”
Appl. Opt.
0003-6935,
22
(
14
), pp.
2109
2114
.
22.
Weingartner
,
I.
, and
Elster
,
C.
, 2004, “
System of Four Distance Sensors for High Accuracy Measurement of Topography
,”
Precis. Eng.
0141-6359,
28
, pp.
164
170
.
23.
Fung
,
E. H. K.
, and
Yang
,
S. M.
, 2000, “
An Error Separation Technique for Measuring Straightness Motion Error of a Linear Slide
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
1515
1521
.
24.
Yang
,
S. M.
,
Fung
,
E. H. K.
, and
Chiu
,
W. M.
, 2002, “
Uncertainty Analysis of On-Machine Motion and Profile Measurement With Sensor Reading Errors
,”
Meas. Sci. Technol.
0957-0233,
13
, pp.
1937
1945
.
You do not currently have access to this content.