Strain-based forming limit diagrams (FLDs) are the traditional tool used to characterize the formability of materials for sheet metal forming processes. However, this failure criterion exhibits a significant strain path dependence. Alternatively, stress-based FLDs have been proposed and shown to be less sensitive to the deformation path. The stress-based failure criterion can be conveniently implemented in numerical simulations. However, for reliable numerical modeling, the sensitivity of the models to the selection of discretization parameters, in particular, the element type must be assessed. In this paper, Marciniak tests have been numerically simulated to investigate failure prediction using three different element types (shell, solid, and solid-shell). Seven different specimen geometries were modeled in order to vary the loading paths. The results show that despite differences in stress calculation assumptions, shell, solid, and solid-shell elements do not provide differences in failure prediction when a stress-based failure criterion is used.

References

1.
Keeler
,
S. P.
, and
Backhofen
,
W. A.
, 1963, “
Plastic Instability and Fracture in Sheet Stretched Over Rigid Punches
,”
ASM Trans. Q.
,
56
, pp.
25
48
.
2.
Banabic
,
D.
, 2010,
Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation
,
Springer-Verlag
,
New York
, ISBN: 978-3540881124.
3.
Stoughton
,
T. B.
, 2001, “
Stress-Based Forming Limits in Sheet-Metal Forming
,”
J. Eng. Mater. Technol.
,
123
, pp.
417
422
.
4.
Sakash
,
A.
,
Moondra
,
S.
, and
Kinsey
,
B. L.
, 2006, “
Effect of Yield Criterion on Numerical Simulation Results Using a Stress-Based Failure Criterion
,”
J. Eng. Mater. Technol.
,
128
(
3
), pp.
436
444
.
5.
Marciniak
,
Z.
, and
Kuczynski
,
K.
, 1967, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
,
9
, pp.
609
620
.
6.
Li
,
B.
,
Nye
,
T. J.
, and
Wu
,
P. D.
, 2010, “
Predicting the Forming Limit Diagram of AA 5182-O
,”
J. Strain Anal. Eng. Des.
,
45
(
4
), pp.
255
273
.
7.
Firat
,
M.
, 2008, “
A Numerical Analysis of Sheet Metal Formability for Automotive Stamping Applications
,
Comput. Mater. Sci.
,
43
, pp.
802
811
.
8.
Reddy
,
G.
,
Reddy
,
P. V. R.
, and
Reddy
,
T. A.
, 2010, “
Finite Element Analysis of the Effect of Coefficient of Friction on the Drawability
,”
Tribol. Int.
,
43
, pp.
1132
1137
.
9.
Duan
,
X.
,
Jain
,
M.
, and
Wilkinson
,
D.
, “
Development of a Heterogeneous Microstructurally Based Finite Element Model for the Prediction of Forming Limit Diagram for Sheet Material
,”
Metall. Mater. Trans. A
,
37A
, pp.
2006
3489
.
10.
Simha
,
C.
,
Grantab
,
R.
, and
Worswick
,
M.
, 2008, “
Application of an Extended Stress-Based Forming Limit Curve to Predict Necking in Stretch Flange Forming
,
J. Manuf. Sci. Eng.
,
130
(
5
), pp.
051007
-1–051007-
11
.
11.
Hongsheng
,
L.
,
Yuying
,
Y.
,
Zhongqi
,
Y.
,
Zhenzhong
,
S.
, and
Yongzhi
,
W.
, 2009, “
The Application of a Ductile Fracture Criterion to the Prediction of the Forming Limit of Sheet Metals
,”
J. Mater. Process. Technol.
,
209
, pp.
5443
5447
.
12.
Uthaisangsuk
,
V.
,
Prahl
,
U.
,
Münstermann
,
S.
, and
Bleck
,
W.
, 2008, “
Experimental and Numerical Failure Criterion for Formability Prediction in Sheet Metal Forming
,”
Comput. Mater. Sci.
,
43
, pp.
43
50
.
13.
Lee
,
D.
, and
Majlessi
,
S. A
, 1993, “
Deep Drawing of Square-Shaped Sheet Metal Parts, Part 1: Finite Element Analysis
,”
J. Eng. Ind.
,
115
, pp.
102
109
.
14.
Galbraith
,
P. C.
, and
Hallquist
,
J. O.
, 1995, “
Shell-Element Formulations in LS-DYNA3D: Their Use in the Modelling of Sheet-Metal Forming
,”
J. Mater. Process. Technol.
,
50
, pp.
158
167
.
15.
Boudeau
,
N.
, and
Gelin
,
J. C.
, 1996, “
Post-Processing of Finite Element Results and Prediction of the Localized Necking in Sheet Metal Forming
,”
J. Mater. Process. Technol.
,
60
, pp.
325
330
.
16.
Yoshida
,
T.
,
Katayama
,
T.
, and
Usuda
,
U.
, 1995, “
Forming-Limit Analysis of Hemispherical-Punch Stretching Using the Three-Dimensional Finite-Element Method
,”
J. Mater. Process. Technol.
,
50
, pp.
226
237
.
17.
Zeng
,
Q.
,
Combescure
,
A.
, and
Arnaudeau
,
F.
, 2001, “
An Efficient Plasticity Algorithm for Shell Elements Application to Metal Forming Simulation
,”
Comput. Struct.
,
79
(
16
), pp.
1525
1540
.
18.
Rank
,
E.
,
Düster
,
A.
,
Nübel
,
V.
,
Preusch
,
K.
,
Bruhns
,
O. T.
, and 2005, “
High Order Finite Elements for Shells
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
21–24
), pp.
2494
2512
.
19.
Doll
,
S.
,
Schweizerhof
,
K.
,
Hauptmann
,
R.
, and
Freischläger
,
C.
, 2000, “
On Volumetric Locking of Low-Order Solid and Solid-Shell Elements for Finite Elastoviscoplastic Deformations and Selective Reduced Integration
,”
Eng. Comput.
,
17
(
7
), pp.
874
902
.
20.
Hauptmann
,
R.
,
Doll
,
S.
,
Harnau
,
M.
, and
Schweizerhof
,
K.
, 2001, “
‘Solid-Shell’ Elements With Linear and Quadratic Shape Functions at Large Deformations With Nearly Incompressible Materials
,”
Comput. Struct.
,
79
(
18
), pp.
1671
1685
.
21.
Harnau
,
M.
, and
Schweizerhof
,
K.
, 2002, “
About Linear and Quadratic “Solid-Shell” Elements at Large Deformations
,”
Comput. Struct.
,
80
, pp.
805
817
.
22.
Harnau
,
M.
,
Konyukhov
,
A.
, and
Schweizerhof
,
K.
, 2005, “
Algorithmic Aspects in Large Deformation Contact Analysis Using ‘Solid-Shell’ Elements
,”
Comput. Struct.
,
83
, pp.
1804
1823
.
23.
Lu
,
H.
,
Ito
,
K.
,
Kazama
,
K.
, and
Namura
,
S.
, 2006, “
Development of a New Quadratic Shell Element Considering the Normal Stress in the Thickness Direction for Simulating Sheet Metal Forming
,”
J. Mater. Process. Technol.
,
171
, pp.
341
347
.
24.
Parente
,
M. P. L.
,
Cardoso
,
R. P. R.
, and
Alves de Sousa
,
R. J.
, 2006, “
Sheet Metal Forming Simulation Using EAS Solid-Shell Finite Elements
,”
Finite Elem. Anal. Des.
,
42
, pp.
1137
1149
.
25.
Alves de Sousa
,
R. J.
,
Yoon
,
J. W.
,
Cardoso
,
R. P. R.
,
Fontes Valente
,
R. A.
, and
Grácio
,
J. J.
, 2007, “
On the Use of a Reduced Enhanced Solid-Shell (RESS) Element for Sheet Forming Simulations
,”
Int. J. Plast.
,
23
, pp.
490
515
.
26.
Kulikov
,
G. M.
, and
Plotnikova
,
S. V.
, 2007, “
Non-Linear Geometrically Exact Assumed Stress–Strain Four-Node Solid-Shell Element With High Coarse-Mesh Accuracy
,”
Finite Elem. Anal. Des.
,
43
, pp.
425
443
.
27.
Wriggers
,
P.
,
Eberlein
,
R.
, and
Reese
,
S.
, 1995, “
A Comparison of Three-Dimensional Continuum and Shell Elements for Finite Plasticity
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
3309
3326
.
28.
Jung
,
D. W.
, and
Yang
,
K. B.
, 2000, “
Comparative Investigation into Membrane, Shell and Continuum Elements for the Rigid-Plastic Finite Element Analysis of Two-Dimensional Sheet Metal Forming Problems
,”
J. Mater. Process. Technol.
,
104
, pp.
185
190
.
29.
Raghavan
,
K. S.
, 1995, “
A Simple Technique to Generate In-Plane Forming Limit Curves and Selected Applications
,”
Metall. Mater. Trans. A
,
26
(
8
), pp.
2075
2084
.
30.
Numisheet Benchmarks I, 2008, “
Virtual Forming Limit Curves
,”
7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes
.
31.
MSC Manual, Volume A
, 2008,
Theory and User Information
,
MSC Software Corporation
,
Santa Ana, CA
.
32.
MSC Manual, Volume B
, 2008,
Element Library
,
MSC Software Corporation
,
Santa Ana, CA
.
33.
Hasan
,
R. Z.
, 2011, “
Analytical and Numerical Prediction of Localized Necking in Sheet Metal Forming Processes
,” PhD Dissertation, University of New Hampshire.
34.
Kinsey
,
B. L.
,
Moondra
,
S.
, and
Sakash
,
A.
, 2006, “
Robust Prediction of Forming Severity Using a Stress Based Failure Criterion For Sheet Metal
,”
Trans. NAMRI/SME
,
34
, pp.
491
498
.
You do not currently have access to this content.