This research presents a numerical model and the experimental validation of the anode crater formation in electrical discharge machining (EDM) process. The modeling is based on the theory that the material removal process in EDM is composed of two consecutive phases: the plasma heating phase in which intensive thermal energy density is applied locally to melt the work-material and the bubble collapsing phase in which the fluidic impact expels the molten material. A mathematical heat source model with Gaussian distributed heat flux and time variant heating area is applied in the plasma heating phase. Standard modules of a commercial computational fluid dynamics software, fluent, are adapted to model the crater formation in EDM. The material melting is simulated using transient heat transfer analysis and an enthalpy balance method. The volume of fraction (VOF) method is used to tackle the multiphase interactions in the processes of bubble compression and collapsing and molten material splashing and resolidification. Crater and debris geometries are attained from the model simulation and validation experiments are conducted to compare the crater morphology. The simulation and experiment results at different discharge conditions show good agreement on crater diameter suggest that the model is able to describe the mechanism of EDM crater formation.

References

1.
DiBitonto
,
D. D.
,
Eubank
,
P. T.
,
Patel
,
M. R.
, and
Barrufet
,
M. A.
, 1989, “
Theoretical Models of the Electrical Discharge Machining Process. I. A simple Cathode Erosion Model
,”
J. Appl. Phys.
,
66
, pp.
4095
4103
.
2.
Arunachalam
,
C.
, 1995, “
Modeling the Electrical Discharge Machining Process
,” Ph.D. thesis, Texas A&M University, 4.
3.
Tamura
,
T.
, and
Kobayashi
,
Y.
, 2004, “
Measurement of Impulsive Forces and Crater Formation in Impulse Discharge
,”
J. Mater. Process Tech.
,
149
, pp.
212
216
.
4.
Luo
,
Y. F.
, and
Tao
,
J.
, 2009 “
Metal Removal in EDM Driven by Shifting Secondary Discharge
,”
J. Manuf. Sci. Eng.
,
131
,
031014
.
5.
Natsu
,
W.
,
Ojima
,
S.
,
Kobayashi
,
T.
, and
Kunieda
,
M.
, 2004, “
Temperature Distribution Measurement in EDM Arc Plasma Using Spectroscopy
,”
JSME Int. J., Ser. C
,
47
, pp.
384
390
.
6.
Eubank
,
P. T.
,
Patel
,
M. R.
,
Burrufet
,
M. A.
, and
Bozkurt
,
B.
, 1993, “
Theoretical Models of the Electrical Discharge Machining Process. III. The Variable Mass, Cylindrical Plasma Model
,”
J. Appl. Phys.
,
73
,
7900
7909
.
7.
Patel
,
M. R.
,
Barrufet
,
M. A.
,
Eubank
,
P. T.
, and
DiBitonto
,
D. D.
, 1989 “
Theoretical Models of the Electrical Discharge Machining Process. II. The Anode Erosion Model
,”
J. Appl. Phys.
,
66
, pp.
4104
4111
.
8.
Murali
,
M. S.
, and
Yeo
,
S. H.
, 2005, “
Process Simulation and Residual Stress Estimation of Micro-Electrodischarge Machining Using Finite Element Method
,”
Jpn. J. Appl. Phys.
,
44
, pp.
5254
5263
.
9.
Yeo
,
S. H.
,
Kurnia
,
W.
, and
Tan
,
P. C.
, 2007, “
Electro-Thermal Modelling of Anode and Cathode in Micro-EDM
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
2513
2521
.
10.
Das
,
S.
,
Koltz
,
M.
, and
Klocke
,
F.
, 2003, “
EDM Simulation: Finite Element-Based Calculation of Deformation, Microstructure and Residual Stress
,”
J. Mater. Process Tech.
,
142
, pp.
434
451
.
11.
Lasagni
,
A.
,
Soldera
,
F.
, and
Mucklich
,
F.
, 2004, “
FEM Simulation of Local Heating and Melting During Electrical Discharge Plasma Impact
,”
Modell. Simul. Mater. Sci. Eng.
,
12
,
835
844
.
12.
Shervani-Tabar
,
M. T.
,
Abdullah
,
A.
, and
Shabgard
,
M. R.
, 2006 “
Numerical Study on the Dynamics of an Electrical Discharge Generated Bubble in EDM
,”
Eng. Anal. Boundary Elem.
,
30
,
503
514
.
13.
Hockenberry
,
T. O.
, and
Williams
,
E. M.
, 1976, “
Dynamic Evolution of Events Accompanying the Low-Voltage Discharges Employed in EDM
,”
IEEE. Trans. Ind. Appl.
,
IGA-3
, pp.
302
308
.
14.
Klocke
,
F.
,
Thomaidis
,
D.
,
Garzon
,
M.
,
Veselovac
,
D.
, and
Klink
,
A.
, 2007, “
Force Measurements in the Micro Spark Erosion With Various Electrode Materials, Polarities and Working Media
,”
Proceedings of 15th International Symposium on Electromachining
(
ISEM XV
,
Pittsburgh
), pp.
263
268
.
15.
Eckman
,
P. K.
, and
Williams
,
E. M.
, 1960 “
Plasma Dynamics in an Arc Formed by Low-Voltage Sparkover of a Liquid Dielectric
,”
Appl. Sci. Res. Sect. B
,
8
, pp.
299
320
.
16.
Tohi
,
M.
,
Komatsu
,
T.
, and
Kunieda
,
M.
, 2002 “
Measurement of Process Reaction Force in EDM Using Hopkinson Bar Method
,”
Int. J. Jpn. Soc. Precis. Eng.
68
, pp.
822
826
(in Japanese).
17.
FLUENT 6.3 User’s Guide, Fluent Inc., 2006.
18.
Han
,
L.
,
Liou
,
F. W.
, and
Musti
,
S.
, 2005, “
Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process
,”
Trans. ASME, J. Heat Transfer
127
, pp.
1005
1014
.
19.
Childs
,
T. H. G.
,
Hauser
,
G.
, and
Badrossamay
,
M.
, 2005, “
Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modeling
,”
Proc. Inst. Mech. Eng. Part B
,
219
, pp.
339
357
.
20.
Bayer
,
A. M.
,
Vasco
,
T.
, and
Walton
,
L. R.
, 1990, “
Wrought Tool Steels, Properties and Selection: Irons, Steels, and High-Performance Alloys
,”
ASM Handbook
,
ASM International
,
W. Materials Park, OH
, Vol.
1
, pp.
757
779
.
21.
Kao
,
C. C.
,
Tao
,
J.
,
Shih
,
A. J.
, 2007, “
Near Dry Electrical Discharge Machining
,”
Int. J. Machine Tools Manuf.
,
47
, pp.
2273
2281
.
22.
Li
,
Y. B.
,
Lin
,
Z. Q.
,
Chen
,
G. L.
,
Wang
,
Y. S.
, and
Xi
,
S. Y.
, 2002, “
Study on Moving GTA Weld Pool in an Externally Applied Longitudinal Magnetic Field With Experimental and Finite Element Methods
,”
Modell. Simul. Mater. Sci. Eng.
,
10
, pp.
781
798
.
23.
Wong
,
Y. S.
,
Rahman
,
M.
,
Lim
,
H. S.
,
Han
,
H.
, and
Ravi
,
N.
, 2003, “
Investigation of Micro-EDM Material Removal Characteristics Using Single RC-Pulse Discharges
,”
J. Mater. Process Technol.
,
140
, pp.
303
307
.
24.
Natsu
,
W.
,
Shimoyamada
,
M.
, and
Kunieda
,
M.
, 2006, “
Study on Expansion Process of EDM Arc Plasma
,”
JSME Int. J., Ser. C
,
49
, pp.
600
605
.
25.
Tao
,
J.
,
Ni
,
J.
, and
Shih
,
A. J.
, 2008, “
Experimental Study of the Dry and Near-Dry Electrical Discharge Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011002
.
26.
Reed-Hill
,
R. E.
, and
Abbaschian
,
R.
,
Physical Metallurgy Principles
,
PWS Publishing Company
,
Boston, MA
, 1994, pp.
427
428
.
You do not currently have access to this content.