Surface patterning has become a valuable technique for fabricating microdents, which may act as lubricant reservoirs to reduce friction and wear in sliding and rolling contact applications. In this paper, the use of laser shock peening (LSP) along with an automatic X–Y table proves to be an attractive and reliable method for producing microdent arrays with enhanced surface integrity. Surface topography and profiles of the fabricated microdent arrays on polished Ti–6Al–4V have been characterized. The effect of dent arrays with different density on friction reduction at low and high viscosity lubrication was investigated. An acoustic emission (AE) sensor was used to online monitor friction and wear processes. It was found that a surface with 10% dent density provides better effect in reducing coefficient of friction (CoF) than those of smooth surface and a surface with 20% dent density. It was shown that there is a strong correlation between AE energy signals and wear rate.

References

1.
Anderson
,
P.
,
Koskinen
,
J.
,
Varjus
,
S.
,
Gerbig
,
Y.
,
Haefke
,
H.
,
Georgiou
,
S.
,
Zmhud
,
B.
, and
Buss
,
W.
,
2007
, “
Microlubrication Effect by Laser-Texured Steel Surfaces
,”
Wear
,
262
(3–4), pp.
369
379
.10.1016/j.wear.2006.06.003
2.
Haefke
,
H.
,
Gerbig
,
Y.
,
Dumitru
,
G.
, and
Romano
,
V.
,
2000
, “
Microtexturing of Functional Surfaces for Improving Their Tribological Performance
,”
Proceedings of the International Tribology Conference, Nagasaki
, Japan, Oct. 29–Nov. 2, pp.
217
221
.
3.
Romano
,
V.
,
Weber
,
P.
,
Dumitru
,
G.
,
Pimenov
,
S.
,
Kononenko
,
T. V.
,
Konov
,
V.
,
Haefke
,
H.
, and
Gerbig
,
G.
,
2003
, “
Laser Surface Microstructuring to Improve Tribological Systems
,”
Proc. SPIE
,
5121
, pp.
199
211
.10.1117/12.515572
4.
Nakatsuji
,
T.
, and
Mori
,
A.
,
2001
, “
The Tribological Effect of Electrolytically Produced Micro-Pools and Phosphoric Compounds on Medium Carbon Steel Surfaces in Rolling–Sliding Contact
,”
Tribol. Trans.
,
44
(2), pp.
173
178
.10.1080/10402000108982444
5.
Friedrich
,
C. R.
,
2002
, “
Micromechanical Machining of High Aspect Ratio Prototypes
,”
Microsyst. Technol.
,
8
(4–5), pp.
343
347
.10.1007/s00542-001-0167-1
6.
Etsion
,
I.
,
2005
, “
State of Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
253
.10.1115/1.1828070
7.
Clauer
,
A.
,
1996
, “Laser Shock Peening for Fatigue Resistance,” Surface Performance of Titanium, J. K. Gregory, H. J. Rack, and D. Eylon, eds., TMS, Warrendale, PA, pp.
217
230
.
8.
Dane
,
C. B.
,
Hackel
,
L. A.
,
Daly
,
J.
, and
Harrison
,
J.
,
1998
, “
High Laser Power for Peening of Metals Enabling Production Technology
,”
Advanced Aerospace Materials and Process Conference
, Tysons Corner, VA, June 15–18.
9.
Manna
,
S.
, and
Cowie
,
W. D.
,
1996
, “
Technique to Prevent of Divert Cracks
,” GE Company, U.S. Patent No. 5,569,018.
10.
Zhang
,
H.
, and
Yu
,
C.
,
1998
, “
Laser Shock Processing of 2024-T62 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
257
(2), pp.
322
327
.10.1016/S0921-5093(98)00847-8
11.
Yang
,
J.
,
Her
,
Y. C.
,
Nanlin
,
H.
, and
Clauer
,
A.
,
2000
, “
Laser Shock Peening on Fatigue Behavior of 2024-T3 Al Alloy With Fastener Holes and Stopholes
,”
Mater. Sci. Eng. A
,
298
(1–2), pp.
296
309
.10.1016/S0921-5093(00)01277-6
12.
Nalla
,
R.
,
Altenberg
,
I.
,
Noster
,
U.
,
Liu
,
G. Y.
,
Scholtes
,
B.
, and
Ritchie
,
R.
,
2003
, “
On the Influence of Mechanical Surface Treatments—Deep Rolling and Laser Shock Peening—On the Fatigue Behavior of Ti–6Al–4V at Ambient and Elevated Temperatures
,”
Mater. Sci. Eng. A
,
355
(1–2), pp.
216
230
.10.1016/S0921-5093(03)00069-8
13.
Blatter
,
A.
,
Maillat
,
M.
,
Pimenov
,
S. M.
,
Shafeev
,
G.
,
Simakin
,
A. V.
, and
Loubnin
,
N.
,
1999
, “
Lubricated Sliding Performance of Laser-Patterned Sapphire
,”
Wear
,
232
(2), pp.
226
230
.10.1016/S0043-1648(99)00150-7
14.
Geiger
,
M.
,
Roth
,
S.
, and
Becker
,
W.
,
1998
, “
Influence of Laser Produced Microstructures on the Tribological Behavior of Ceramics
,”
Surf. Coat. Technol.
,
100–101
, pp.
17
22
.10.1016/S0257-8972(97)00581-1
15.
Wakuda
,
M.
,
Yamauchi
,
Y.
,
Kanzaki
,
S.
, and
Yasuda
,
Y.
,
2003
, “
Effect of Surface Texturing on Friction Reduction Between Ceramics and Steel Materials Under Lubricated Sliding Contact
,”
Wear
,
254
(3–4), pp.
356
363
.10.1016/S0043-1648(03)00004-8
16.
Pettersson
,
U.
, and
Jacobson
,
S.
,
2003
, “
Influence of Surface Texture on Boundary Lubricated Sliding Contacts
,”
Tribol. Int.
,
36
(11), pp.
857
864
.10.1016/S0301-679X(03)00104-X
17.
Ryk
,
G.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2002
, “
Experimental Investigation of Laser Surface Texturing for Reciprocating Automotive Components
,”
Tribol. Trans.
,
34
(4), pp.
444
449
.10.1080/10402000208982572
18.
Boness
,
R. J.
, and
McBride
,
S. L.
,
1991
, “
Adhesive and Abrasive Wear Studies Using Acoustic Emission Techniques
,”
Wear
,
149
(1–2), pp.
41
53
.10.1016/0043-1648(91)90363-Y
19.
Hanchi
,
J.
, and
Klamecki
,
B. E.
,
1991
, “
Acoustic Emission Monitoring of the Wear Process
,”
Wear
,
145
(1), pp.
1
27
.10.1016/0043-1648(91)90236-N
20.
Lou
,
K. N.
, and
Lee
,
C. T.
,
1995
, “
An Intelligent On-line Tool Monitoring System in Milling Processes
,”
Proceedings at IEEE
, Vancouver, BC, Oct. 22–25, pp.
2651
2656
.
21.
Jacobsen
,
M. L.
,
Wilkinson
,
P.
,
Barton
,
J. S.
,
Reuben
,
R. L.
,
Harvey
,
D.
, and
Jones
,
J. D. C.
,
2005
, “
The Effects of Progressive Wear on the Frequency Characteristic of Acoustic Emission Acquired During Face Milling
,”
Proc. Inst. Mech. Eng., Part B
,
219
, pp.
803
810
.10.1243/095440505X69355
22.
Mathew
,
M. T.
,
Pai
,
P. S.
, and
Rocha
,
L. A.
,
2008
, “
An Effective Sensor for Tool Wear Monitoring in Face Milling: Acoustic Emission
,”
Acad. Proc. Eng. Sci.
,
33
(
3
), pp.
227
233
.10.1007/s12046-008-0016-3
23.
Guo
,
Y. B.
, and
Ammula
,
S. C.
,
2005
, “
Real-time Acoustic Emission Monitoring for Surface Damage in Hard Machining
,”
Int. J. Mach. Tools Manuf.
,
45
(14), pp.
1622
1627
.10.1016/j.ijmachtools.2005.02.007
24.
Skare
,
T.
, and
Krantz
,
F.
,
2003
, “
Wear and Frictional Behavior of High Strength Steel in Stamping Monitored by Acoustic Emission Technique
,”
Wear
,
255
(7–12), pp.
1471
1479
.10.1016/S0043-1648(03)00197-2
25.
Lee
,
J. M.
,
Choi
,
D. K.
, and
Chu
,
C. N.
,
1994
, “
Real-time Tool Breakage Monitoring for NC Turning and Drilling
,”
Ann. CIRP
,
43
(1), pp.
81
84
.10.1016/S0007-8506(07)62169-6
26.
Matsuoka
,
K.
,
Taniguchi
,
K.
, and
Nakakita
,
M.
,
2001
, “
In-Situ Wear Monitoring of Slider and Disk Using Acoustic Emission
,”
ASME J. Tribol.
,
123
(
1
), pp.
175
180
.10.1115/1.1327586
27.
Benabdallah
,
H. S.
, and
Aguilar
,
D. A.
,
2008
, “
Acoustic Emission and Its Relationship With Friction and Wear for Sliding Contact
,”
Tribol. Trans.
,
51
(6), pp.
738
747
.10.1080/10402000802044324
28.
Hase
,
A.
,
Wada
,
M.
, and
Mishina
,
H.
,
2008
, “
The Relationship Between Acoustic Emissions and Wear Particles for Repeated Dry Rubbing
,”
Wear
,
265
(5–6), pp.
831
839
.10.1016/j.wear.2008.01.011
29.
Lingard
,
S.
,
Yu
,
C. W.
, and
Yau
,
C. F.
,
1993
, “
Sliding Wear Studies Using Acoustic Emission
,”
Wear
,
162–164
, pp.
597
604
.10.1016/0043-1648(93)90548-Z
30.
Mechefske
,
C. K.
,
Sun
,
G.
, and
Sheasby
,
J.
,
2002
, “
Using Acoustic Emission to Monitor Sliding Wear
,”
Insight
,
44
, pp.
1
8
.
31.
Caslaru
,
R.
,
Sealy
,
M. P.
,
Guo
,
Y. B.
, and
Chen
,
S. C.
,
2009
, “
Fabrication and Characterization of Micro Dent Array Produced by Laser Shock Peening on Aluminum Surfaces
,”
Trans. NAMRI/SME
,
37
, pp.
159
166
.
32.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
J.
Virmont
,
1990
, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
, pp.
775
784
.10.1063/1.346783
33.
Physical Acoustics Corporation, PCI-2 Based AE System User's Manual 2003 ver.1.
You do not currently have access to this content.