Additive manufacturing (AM), partly due to its compatibility with computer-aided design (CAD) and fabrication of intricate shapes, is an emerging production process. Postprocessing, such as machining, is particularly necessary for metal AM due to the lack of surface quality for as-built parts being a problem when using as a production process. In this paper, a predictive model for cutting forces has been developed by using artificial neural networks (ANNs). The effect of tool path and cutting condition, including cutting speed, feed rate, machining allowance, and scallop height, on the generated force during machining of spherical components such as prosthetic acetabular shell was investigated. Also, different annealing processes like stress relieving, mill annealing and β annealing have been carried out on the samples to better understand the effect of brittleness, strength, and hardness on machining. The results of this study showed that ANN can accurately apply to model cutting force when using ball nose cutters. Scallop height has the highest impact on cutting forces followed by spindle speed, finishing allowance, heat treatment/annealing temperature, tool path, and feed rate. The results illustrate that using linear tool path and increasing annealing temperature can result in lower cutting force. Higher cutting force was observed with greater scallop height and feed rate while for higher finishing allowance, cutting forces decreased. For spindle speed, the trend of cutting force was increasing up to a critical point and then decreasing due to thermal softening.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
2.
Bourell
,
D. L.
,
2016
, “
Perspectives on Additive Manufacturing
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
1
18
.
3.
Safronov
,
V.
,
Khmyrov
,
R.
,
Kotoban
,
D.
, and
Gusarov
,
A.
,
2016
, “
Distortions and Residual Stresses at Layer-by-Layer Additive Manufacturing by Fusion
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031017
.
4.
O'Donnell
,
J.
,
Kim
,
M.
, and
Yoon
,
H.-S.
,
2016
, “
A Review on Electromechanical Devices Fabricated by Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
010801
.
5.
Laureijs
,
R. E.
,
Roca
,
J. B.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J. L.
, and
Fuchs
,
E. R.
,
2017
, “
Metal Additive Manufacturing: Cost Competitive Beyond Low Volumes
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081010
.
6.
Chen
,
C.
,
Shen
,
Y.
, and
Tsai
,
H.-L.
,
2016
, “
A Foil-Based Additive Manufacturing Technology for Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
024501
.
7.
Song
,
B.
,
Dong
,
S.
,
Coddet
,
P.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Fabrication and Microstructure Characterization of Selective Laser‐Melted FeAl Intermetallic Parts
,”
Surf. Coat. Technol.
,
206
(
22
), pp.
4704
4709
.
8.
Song
,
B.
,
Dong
,
S.
, and
Coddet
,
C.
,
2014
, “
Rapid In Situ Fabrication of Fe/SiC Bulk Nanocomposites by Selective Laser Melting Directly From a Mixed Powder of Microsized Fe and SiC
,”
Scr. Mater.
,
75
, pp.
90
93
.
9.
Subrahmanyam
,
K.
,
San
,
W. Y.
,
Soon
,
H. G.
, and
Sheng
,
H.
,
2010
, “
Cutting Force Prediction for Ball Nose Milling of Inclined Surface
,”
Int. J. Adv. Manuf. Technol.
,
48
(
1–4
), pp.
23
32
.
10.
Altintas
,
Y.
,
2001
, “
Analytical Prediction of Three Dimensional Chatter Stability in Milling
,”
JSME Int. J. Ser. C Mech. Syst., Mach. Elem. Manuf.
,
44
(
3
), pp.
717
723
.
11.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
New York
.
12.
Altıntas
,
Y.
, and
Lee
,
P.
,
1998
, “
Mechanics and Dynamics of Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
684
692
.
13.
Engin
,
S.
, and
Altintas
,
Y.
,
1999
, “
Generalized Modeling of Milling Mechanics and Dynamics—Part I: Helical End Mills
,”
Am. Soc. Mech. Eng. Manuf. Eng. Div. (MED)
,
10
, pp.
345
352
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.506.3855&rep=rep1&type=pdf
14.
Tunç
,
L. T.
,
Ozkirimli
,
O. M.
, and
Budak
,
E.
,
2016
, “
Machining Strategy Development and Parameter Selection in 5-Axis Milling Based on Process Simulations
,”
Int. J. Adv. Manuf. Technol.
,
85
(5–8), pp. 1483–1500.
15.
Gradišek
,
J.
,
Kalveram
,
M.
, and
Weinert
,
K.
,
2004
, “
Mechanistic Identification of Specific Force Coefficients for a General End Mill
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
401
414
.
16.
Ng
,
E.-G.
,
Lee
,
D.
,
Sharman
,
A.
,
Dewes
,
R.
,
Aspinwall
,
D.
, and
Vigneau
,
J.
,
2000
, “
High Speed Ball Nose End Milling of Inconel 718
,”
CIRP Ann.-Manuf. Technol.
,
49
(
1
), pp.
41
46
.
17.
Neto
,
H. K.
,
Diniz
,
A. E.
, and
Pederiva
,
R.
,
2016
, “
Influence of Tooth Passing Frequency, Feed Direction, and Tool Overhang on the Surface Roughness of Curved Surfaces of Hardened Steel
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1–4
), pp.
753
764
.
18.
Heisel
,
C.
,
Kleinhans
,
J. A.
,
Menge
,
M.
, and
Kretzer
,
J. P.
,
2009
, “
Ten Different Hip Resurfacing Systems: Biomechanical Analysis of Design and Material Properties
,”
Int. Orthop.
,
33
(
4
), pp.
939
943
.
19.
Wang
,
S.
,
Geng
,
L.
,
Zhang
,
Y.
,
Liu
,
K.
, and
Ng
,
T.
,
2015
, “
Cutting Force Prediction for Five-Axis Ball-End Milling Considering Cutter Vibrations and Run-out
,”
Int. J. Mech. Sci.
,
96–97
, pp.
206
215
.
20.
Ng
,
E. G.
,
Lee
,
D. W.
,
Dewes
,
R. C.
, and
Aspinwall
,
D. K.
,
2000
, “
Experimental Evaluation of Cutter Orientation When Ball Nose End Milling Inconel 718™
,”
J. Manuf. Process.
,
2
(
2
), pp.
108
115
.
21.
Scandiffio
,
I.
,
Diniz
,
A. E.
, and
de Souza
,
A. F.
,
2015
, “
Evaluating Surface Roughness, Tool Life, and Machining Force When Milling Free-Form Shapes on Hardened AISI D6 Steel
,”
Int. J. Adv. Manuf. Technol.
,
82
(9–12), pp. 2075–2086.
22.
Abrari
,
F.
,
Elbestawi
,
M. A.
, and
Spence
,
A. D.
,
1998
, “
On the Dynamics of Ball End Milling: Modeling of Cutting Forces and Stability Analysis
,”
Int. J. Mach. Tools Manuf.
,
38
(
3
), pp.
215
237
.
23.
Amir Mahyar Khorasani
,
I. G.
,
Moshe
,
G.
, and
Guy
,
L.
,
2016
, “
Production of Ti–6Al–4V Acetabular Shell Using Selective Laser Melting: Possible Limitations in Fabrication
,”
Rapid Prototyping J.
,
23
(2), pp. 295–304.http://www.emeraldinsight.com/doi/abs/10.1108/RPJ-11-2015-0159
24.
Amir Mahyar Khorasani
,
I. G.
,
2016
, “
Moshe Goldberg, Guy Littlefair, on the Role of Different Annealing Heat Treatments on Mechanical Properties and Microstructure of Selective Laser Melted and Conventional Wrought Ti–6Al–4V
,”
Rapid Prototyping J.
,
23
(2), pp. 217–226.
25.
Khorasani
,
A. M.
,
Yazdi
,
M. R. S.
, and
Safizadeh
,
M. S.
,
2012
, “
Analysis of Machining Parameters Effects on Surface Roughness: A Review
,”
Int. J. Comput. Mater. Sci. Surf. Eng.
,
5
(
1
), pp.
68
84
.https://www.inderscienceonline.com/doi/abs/10.1504/IJCMSSE.2012.049055
26.
Lee
,
P.
, and
Altintaş
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
27.
Joshi
,
V. A.
,
2006
,
Titanium Alloys: An Atlas of Structures and Fracture Features
,
CRC Press
,
Boca Raton, FL
.
28.
ASTM International
,
2010
,
ASM Hanbooks Online Volume 2: Properties and Selection: Nonferrous and Specialpurpose Materials, Titanium and Titanium Alloy Castings Product Application
, Vol.
2
,
ASTM International
,
West Conshohocken, PA
.
29.
Mark
,
A.
,
Xu
,
Y.
, and
Gou
,
J.
,
2016
, “
Deposition Thickness Modeling and Parameter Identification for a Spray-Assisted Vacuum Filtration Process in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041002
.
30.
Wolcott
,
P. J.
,
Pawlowski
,
C.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2017
, “
Seam Welding of Aluminum Sheet Using Ultrasonic Additive Manufacturing System
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011010
.
31.
Korani
,
M.
, and
Goshe
,
R.
,
2016
, “
Tool Selection in Machinng of Selective Laser Melting Based on Artificial Neural Networks and Regression Models
,”
J. Manuf. Technol.
,
14
(
6
), pp.
60
69
.
32.
Korani
,
M.
, and
Lotfi
,
A.
,
2015
, “
Heat Treatment of Titanium Alloys Produced by Selective Laser Melting
,”
J. Manuf. Technol.
,
13
(
2
), pp.
70
76
.
33.
Khorasani
,
A.
, and
Soleymani Yazdi
,
M. R.
,
2015
, “
Development of a Dynamic Surface Roughness Monitoring System Based on Artificial Neural Networks (ANN) in Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
93
(1–4), pp. 141–151.
34.
Khorasani
,
A. M.
, Gibson, I., Goldberg, M., Doeven, E. H., and Littlefair, G.,
2016
, “
Investigation on the Effect of Cutting Fluid Pressure on Surface Quality Measurement in High Speed Thread Milling of Brass Alloy (C3600) and Aluminium Alloy (5083)
,”
Measurement
,
82
, pp.
55
63
.
35.
Khorasani
,
A. M.
,
Soleymani Yazdi
,
M. R.
, and
Safizadeh
,
M. S.
,
2011
, “
Tool Life Prediction in Face Milling Machiningof 7075 Al by Using Artificial Neural Networks (ANN) and Taguchi Design of Experiment (DOE)
,”
Int. J. Eng. Technol.
,
3
(
1
), p.
30
.
36.
Ezugwu
,
E.
, and
Wang
,
Z.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
.
37.
Li
,
C.
,
Zhang
,
X.-Y.
,
Li
,
Z.-Y.
, and
Zhou
,
K.-C.
,
2013
, “
Hot Deformation of Ti–5Al–5Mo–5 V–1Cr–1Fe Near β Titanium Alloys Containing Thin and Thick Lamellar α Phase
,”
Mater. Sci. Eng. A
,
573
, pp.
75
83
.
38.
Khorasani
,
A. M.
,
Gibson
,
I.
,
Chegini
,
N. G.
,
Goldberg
,
M.
,
Ghasemi
,
A. H.
, and
Littlefair
,
G.
,
2016
, “
An Improved Static Model for Tool Deflection in Machining of Ti–6Al–4V Acetabular Shell Produced by Selective Laser Melting
,”
Measurement
,
92
, pp.
534
544
.
39.
Pramanik
,
A.
,
Islam
,
M. N.
,
Basak
,
A.
, and
Littlefair
,
G.
,
2013
, “
Machining and Tool Wear Mechanisms During Machining Titanium Alloys
,”
Adv. Mater. Res.
,
651
, pp.
338
343
.
40.
Wang
,
Z.
,
Wong
,
Y.
, and
Rahman
,
M.
,
2005
, “
High-Speed Milling of Titanium Alloys Using Binderless CBN Tools
,”
Int. J. Mach. Tools Manuf.
,
45
(
1
), pp.
105
114
.
41.
Lopez de Lacalle
,
L.
,
Angulo
,
C.
,
Lamikiz
,
A.
, and
Sánchez
,
J. A.
,
2006
, “
Experimental and Numerical Investigation of the Effect of Spray Cutting Fluids in High Speed Milling
,”
J. Mater. Process. Technol.
,
172
(
1
), pp.
11
15
.
42.
Özel
,
T.
, and
Zeren
,
E.
,
2007
, “
Finite Element Modeling the Influence of Edge Roundness on the Stress and Temperature Fields Induced by High-Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3–4
), pp.
255
267
.
43.
Zhang
,
J.
,
Liu
,
Z.
, and
Du
,
J.
,
2015
, “
Modelling and Prediction of Tool-Chip Interface Temperature in Hard Machining of H13 Steel With PVD Coated Tools
,”
Int. J. Mach. Machinabil. Mater.
,
17
(
5
), pp.
381
396
.
44.
Dogu
,
Y.
,
Aslan
,
E.
, and
Camuscu
,
N.
,
2006
, “
A Numerical Model to Determine Temperature Distribution in Orthogonal Metal Cutting
,”
J. Mater. Process. Technol.
,
171
(
1
), pp.
1
9
.
45.
Korkut
,
I.
,
Acır
,
A.
, and
Boy
,
M.
,
2011
, “
Application of Regression and Artificial Neural Network Analysis in Modelling of Tool–Chip Interface Temperature in Machining
,”
Expert Syst. Appl.
,
38
(
9
), pp.
11651
11656
.
46.
Korkut
,
I.
,
Boy
,
M.
,
Karacan
,
I.
, and
Seker
,
U.
,
2007
, “
Investigation of Chip-Back Temperature During Machining Depending on Cutting Parameters
,”
Mater. Des.
,
28
(
8
), pp.
2329
2335
.
47.
Saffar
,
R. J.
, and
Razfar
,
M.
,
2010
, “
Simulation of End Milling Operation for Predicting Cutting Forces to Minimize Tool Deflection by Genetic Algorithm
,”
Mach. Sci. Technol.
,
14
(
1
), pp.
81
101
.
48.
Ratchev
,
S.
,
Govender
,
E.
,
Nikov
,
S.
,
Phuah
,
K.
, and
Tsiklos
,
G.
,
2003
, “
Force and Deflection Modelling in Milling of Low-Rigidity Complex Parts
,”
J. Mater. Process. Technol.
,
143–144
, pp.
796
801
.
49.
Ong
,
T.
, and
Hinds
,
B.
,
2003
, “
The Application of Tool Deflection Knowledge in Process Planning to Meet Geometric Tolerances
,”
Int. J. Mach. Tools Manuf.
,
43
(
7
), pp.
731
737
.
50.
López de Lacalle
,
L.
,
Lamikiz
,
A.
,
Sánchez
,
J. A.
, and
Salgado
,
M. A.
,
2007
, “
Toolpath Selection Based on the Minimum Deflection Cutting Forces in the Programming of Complex Surfaces Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
388
400
.
51.
Jalili Saffar
,
R.
,
Razfar
,
M. R.
,
Zarei
,
O.
, and
Ghassemieh
,
E.
,
2008
, “
Simulation of Three-Dimension Cutting Force and Tool Deflection in the End Milling Operation Based on Finite Element Method
,”
Simul. Modell. Pract. Theory
,
16
(
10
), pp.
1677
1688
.
52.
Dépincé
,
P.
, and
Hascoet
,
J.-Y.
,
2006
, “
Active Integration of Tool Deflection Effects in End Milling—Part 1: Prediction of Milled Surfaces
,”
Int. J. Mach. Tools Manuf.
,
46
(
9
), pp.
937
944
.
53.
Ryu
,
S. H.
,
Lee
,
H. S.
, and
Chu
,
C. N.
,
2003
, “
The Form Error Prediction in Side Wall Machining Considering Tool Deflection
,”
Int. J. Mach. Tools Manuf.
,
43
(
14
), pp.
1405
1411
.
54.
Ke
,
Y.-L.
,
Dong
,
H.-Y.
,
Liu
,
G.
, and
Zhang
,
M.
,
2009
, “
Use of Nitrogen Gas in High-Speed Milling of Ti–6Al–4V
,”
Trans. Nonferrous Met. Soc. China
,
19
(
3
), pp.
530
534
.
55.
Pramanik
,
A.
,
2014
, “
Problems and Solutions in Machining of Titanium Alloys
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
919
928
.
56.
Nabhani
,
F.
,
2001
, “
Machining of Aerospace Titanium Alloys
,”
Rob. Comput. Integr. Manuf.
,
17
(
1–2
), pp.
99
106
.
57.
Machado
,
A.
, and
Wallbank
,
J.
,
1990
, “
Machining of Titanium and Its Alloys—A Review
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
204
(
1
), pp.
53
60
.
58.
Attar
,
H.
,
Calin
,
M.
,
Zhang
,
L. C.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2014
, “
Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium
,”
Mater. Sci. Eng. A
,
593
, pp.
170
177
.
59.
Murr
,
L.
,
Quinones
,
S. A.
,
Gaytan
,
S. M.
,
Lopez
,
M. I.
,
Rodela
,
A.
,
Martinez
,
E. Y.
,
Hernandez
,
D. H.
,
Martinez
,
E.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2009
, “
Microstructure and Mechanical Behavior of Ti–6Al–4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
20
32
.
60.
Vrancken
,
B.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Humbeeck
,
J. V.
,
2012
, “
Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
541
, pp.
177
185
.
61.
Gu
,
D.
,
Hagedorn
,
Y.-C.
,
Meiners
,
W.
,
Meng
,
G.
,
Batista
,
R. J. S.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium
,”
Acta Mater.
,
60
(
9
), pp.
3849
3860
.
62.
Weingarten
,
C.
,
Buchbinder
,
D.
,
Pirch
,
N.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2015
, “
Formation and Reduction of Hydrogen Porosity During Selective Laser Melting of AlSi10 Mg
,”
J. Mater. Process. Technol.
,
221
, pp.
112
120
.
63.
Sieniawski
,
J.
,
Ziaja
,
W.
,
Kubiak
,
K.
, and
Motyka
,
M.
,
2013
, “
Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys
,”
Titanium Alloys-Advances in Properties Control
, InTech, Rijeka, Croatia, pp.
69
80
.
64.
Baufeld
,
B.
,
Brandl
,
E.
, and
van der Biest
,
O.
,
2011
, “
Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti–6Al–4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
1146
1158
.
65.
Gorny
,
B.
,
Niendorf
,
T.
,
Lackmann
,
J.
,
Thoene
,
M.
,
Troester
,
T.
, and
Maier
,
H. J.
,
2011
, “
In Situ Characterization of the Deformation and Failure Behavior of Non-Stochastic Porous Structures Processed by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
528
(
27
), pp.
7962
7967
.
66.
Baufeld
,
B.
,
Biest
,
O.
, and
Gault
,
R.
,
2010
, “
Additive Manufacturing of Ti–6Al–4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties
,”
Mater. Des.
,
31
(
1
), pp.
S106
S111
.
67.
Santos
,
E.
,
Abe
,
F.
,
Kitamura
,
Y.
,
Osakada
,
K.
, and
Shiomi
,
M.
,
2002
, “
Mechanical Properties of Pure Titanium Models Processed by Selective Laser Melting
,”
Proc. Inst. Mech. Eng. Part C
,
218
(
7
), pp. 180–186.https://pdfs.semanticscholar.org/5553/6b007b30d4a8f433957781a22734a66217ad.pdf
68.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
, and
Yadroitsava
,
I.
,
2014
, “
Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution
,”
J. Alloys Compd.
,
583
, pp.
404
409
.
69.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E.
,
1993
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Novelty, OH
.
70.
Li
,
X.
,
Roberts
,
M.
,
Liu
,
Y. J.
,
Kang
,
C. W.
,
Huang
,
H.
, and
Sercombe
,
T. B.
,
2015
, “
Effect of Substrate Temperature on the Interface Bond Between Support and Substrate During Selective Laser Melting of Al–Ni–Y–Co–La Metallic Glass
,”
Mater. Des.
,
65
, pp. 1–6.
71.
Jovanović
,
M.
,
Tadić
,
S.
,
Zec
,
S.
,
Mišković
,
Z.
, and
Bobić
,
I.
,
2006
, “
The Effect of Annealing Temperatures and Cooling Rates on Microstructure and Mechanical Properties of Investment Cast Ti–6Al–4V Alloy
,”
Mater. Des.
,
27
(
3
), pp.
192
199
.
72.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
73.
Chlebus
,
E.
,
Kuźnicka
,
B.
,
Kurzynowski
,
T.
, and
Dybała
,
B.
,
2011
, “
Microstructure and Mechanical Behaviour of Ti―6Al―7Nb Alloy Produced by Selective Laser Melting
,”
Mater. Charact.
,
62
(
5
), pp.
488
495
.
You do not currently have access to this content.