Vacuum arc remelting (VAR) is a melting process for the production of homogeneous ingots, achieved by applying a direct current to create electrical arcs between the input electrode and the resultant ingot. Arc behavior drives quality of the end product, but no methodology is currently used in VAR furnaces at large scale to track arcs in real time. An arc position sensing (APS) technology was recently developed as a methodology to predict arc locations using magnetic field values measured by sensors. This system couples finite element analysis of VAR furnace magnetostatics with direct magnetic field measurements to predict arc locations. However, the published APS approach did not consider the effect of various practical issues that could affect the magnetic field distribution and thus arc location predictions. In this paper, we studied how altering assumptions made in the finite element model affect arc location predictions. These include the vertical position of the sensor relative to the electrode–ingot gap, a varying electrode–ingot gap size, ingot shrinkage, and the use of multiple sensors rather than a single sensor. Among the parameters studied, only vertical distance between arc and sensor locations causes large sources of error and should be considered further when applying an APS system. However, averaging the predicted locations from four evenly spaced sensors helps reduce this error to no more than 16% for a sensor position varying from 0.508 m below and above the electrode–ingot gap height.

References

1.
Yu
,
K. O.
,
2002
,
Modelling for Casting and Solidification Processing
,
Dekker
,
New York
.
2.
Woodside
,
C. R.
,
King
,
P. E.
, and
Nordlund
,
C.
,
2013
, “
Arc Distribution During the Vacuum Arc Remelting of Ti–6Al–4V
,”
Metall. Mater. Trans. B
,
44
(
1
), pp.
154
165
.
3.
Pericleous
,
K.
,
Djambazov
,
G.
,
Ward
,
M.
,
Yuan
,
L.
, and
Lee
,
P. D.
,
2013
, “
A Multiscale 3D Model of the Vacuum Arc Remelting Process
,”
Metall. Mater. Trans. A
,
44
(
12
), pp.
5365
5376
.
4.
Zhao
,
X.-H.
,
Li
,
J.-S.
,
Yang
,
Z.-J.
,
Kou
,
H.-C.
,
Hu
,
R.
, and
Zhou
,
L.
,
2011
, “
Numerical Simulation of Fluid Flow Caused by Buoyancy Forces During Vacuum Arc Remelting Process
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
16
(
3
), pp.
272
276
.
5.
Yang
,
Z.-J.
,
Zhao
,
X.-H.
,
Kou
,
H.-C.
,
Li
,
J.-S.
,
Hu
,
R.
, and
Zhuo
,
L.
,
2010
, “
Numerical Simulation of Temperature Distribution and Heat Transfer During Solidification of Titanium Alloy Ingots in Vacuum Arc Remelting Process
,”
Trans. Nonferrous Met. Soc. China
,
20
(
10
), pp.
1957
1962
.
6.
Beaman
,
J. J.
,
Felipe Lopez
,
L.
, and
Williamson
,
R. L.
,
2014
, “
Modeling of the Vacuum Arc Remelting Process for Estimation and Control of the Liquid Pool Profile
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031007
.
7.
Ward
,
R. M.
, and
Jacobs
,
M. H.
,
2004
, “
Electrical and Magnetic Techniques for Monitoring Arc Behaviour During VAR of INCONEL1718: Results From Different Operating Conditions
,”
J. Mater. Sci.
,
39
(
24
), pp.
7135
7143
.
8.
Wang
,
L.
,
Jia
,
S.
,
Shi
,
Z.
, and
Rong
,
M.
,
2005
, “
Numerical Simulation of Vacuum Arc Under Different Axial Magnetic Fields
,”
J. Phys. D: Appl. Phys.
,
38
(
7
), pp.
1034
1041
.
9.
Nair
,
B. G.
, and
Ward
,
R. M.
,
2009
, “
An Analysis of the Use of Magnetic Source Tomography to Measure the Spatial Distribution of Electric Current During Vacuum Arc Remelting
,”
Meas. Sci. Technol.
,
20
(
4
), p.
045701
.
10.
Gartling
,
D. K.
, and
Sackinger
,
P. A.
,
1997
, “
Finite Element Simulation of Vacuum Arc Remelting
,”
Int. J. Numer. Methods Fluids
,
24
(
12)
, pp.
1271
1289
.
11.
Alam
,
M. K.
,
Semiatin
,
S. L.
, and
Ali
,
Z.
,
1998
, “
Thermal Stress Development During Vacuum Arc Remelting and Permanent Mold Casting of Ingots
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
755
763
.
12.
Reiter
,
G.
,
Maronnier
,
V.
,
Sommitsch
,
C.
,
Gäumann
,
M.
,
Schützenhöfer
,
W.
, and
Schneider
,
R.
,
2003
, “
Numerical Simulation of the VAR Process With Calcosoft®-2D and Its Validation
,”
International Symposium on Liquid Metal Processing and Casting
(
LMPC 2003
), Nancy, France, Sept. 21–24, pp.
77
86
.
13.
Wang
,
L.
,
Jia
,
S.
,
Yang
,
D.
,
Liu
,
K.
,
Su
,
G.
, and
Shi
,
Z.
,
2009
, “
Modelling and Simulation of Anode Activity in High-Current Vacuum Arc
,”
J. Phys. D: Appl. Phys.
,
42
(
14
), p.
145203
.
14.
Wang
,
L.
,
Jia
,
S.
,
Liu
,
Y.
,
Chen
,
B.
,
Yang
,
D.
, and
Shi
,
Z.
,
2010
, “
Modeling and Simulation of Anode Melting Pool Flow Under the Action of High-Current Vacuum Arc
,”
J. Appl. Phys.
,
107
(
11
), p.
113306
.
15.
Wang
,
L.
,
Zhou
,
X.
,
Wang
,
H.
,
Qian
,
Z.
,
Jia
,
S.
,
Yang
,
D.
, and
Shi
,
Z.
,
2012
, “
Anode Activity in a High-Current Vacuum Arc: Three-Dimensional Modeling and Simulation
,”
IEEE Trans. Plasma Sci.
,
40
(
9
), pp.
2237
2246
.
16.
Huang
,
X.
,
Wang
,
L.
,
Deng
,
J.
,
Jia
,
S.
,
Qin
,
K.
, and
Shi
,
Z.
,
2016
, “
Modeling of the Anode Surface Deformation in High-Current Vacuum Arcs With AMF Contacts
,”
J. Phys. D: Appl. Phys.
,
49
(
7
), p.
075202
.
17.
Wang
,
L.
,
Zhang
,
X.
,
Huang
,
X.
, and
Jia
,
S.
,
2017
, “
Simulation Results of Influence of Constricted Arc Column on Anode Deformation and Melting Pool Swirl in Vacuum Arcs With AMF Contacts
,”
Phys. Plasmas
,
24
(
11
), p.
113511
.
18.
Mir
,
H. E.
,
Jardy
,
A.
,
Bellot
,
J.-P.
,
Chapelle
,
P.
,
Lasalmonie
,
D.
, and
Senevat
,
J.
,
2010
, “
Thermal Behaviour of the Consumable Electrode in the Vacuum Arc Remelting Process
,”
J. Mater. Process. Technol.
,
210
(
3
), pp.
564
572
.
19.
Woodside
,
C. R.
, and
King
,
P. E.
,
2010
, “
A Measurement System for Determining the Positions of Arcs During Vacuum Arc Remelting
,”
IEEE Instrumentation and Measurement Technology Conference
(
I2MTC
), Austin, TX, May 3–6, pp.
452
457
.
20.
Nair
,
B. G.
,
Winter
,
N.
,
Daniel
,
B.
, and
Ward
,
R. M.
,
2016
, “
Faster Methods for Estimating Arc Centre Position During VAR and Results From Ti–6Al–4V and INCONEL 718 Alloys
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
143
(1), p.
012012
.
21.
Djurdjanovic
,
D.
,
Mears
,
L.
,
Niaki
,
F. A.
,
Haq
,
A. U.
, and
Li
,
L.
,
2017
, “
State of the Art Review on Process, System, and Operations Control in Modern Manufacturing
,”
ASME J. Manuf. Sci. Eng.
, epub.
22.
COMSOL
,
2013
, “
COMSOL Multiphysics: 4.3b
,” COMSOL, Inc., Burlington, MA.
23.
Zanner
,
F. J.
,
Adasczik
,
C.
,
O'Brien
,
T.
, and
Bertram
,
L. A.
,
1984
, “
Observations of Melt Rate as a Function of Arc Power, CO Pressure, and Electrode Gap During Vacuum Consumable Arc Remelting of Inconel 718
,”
Metall. Trans. B
,
15
(
1
), pp.
117
125
.
You do not currently have access to this content.