Abstract

X-ray computed tomography (XCT) is a promising nondestructive evaluation technique for additive manufacturing (AM) parts with complex shapes. Industrial XCT scanning is a relatively new development, and XCT has several acquisition parameters that a user can change for a scan whose effects are not fully understood. An artifact incorporating simulated defects of different sizes was produced using laser powder bed fusion (LPBF) AM. The influence of six XCT acquisition parameters was investigated experimentally based on a fractional factorial designed experiment. Twenty experimental runs were performed. The noise level of the XCT images was affected by the acquisition parameters, and the importance of the acquisition parameters was ranked. The measurement results were further analyzed to understand the probability of detection (POD) of the simulated defects. The POD determination process is detailed, including estimation of the POD confidence limit curve using a bootstrap method. The results are interpreted in the context of the AM process and XCT acquisition parameters.

References

1.
Kim
,
F. H.
, and
Moylan
,
S. P.
,
2018
,
Literature Review of Metal Additive Manufacturing Defects
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
2.
Ng
,
G. K. L.
,
Jarfors
,
A. E. W.
,
Bi
,
G.
, and
Zheng
,
H. Y.
,
2009
, “
Porosity Formation and Gas Bubble Retention in Laser Metal Deposition
,”
Appl. Phys. A
,
97
(
3
), pp.
641
649
. 10.1007/s00339-009-5266-3
3.
Ahsan
,
M. N.
,
Bradley
,
R.
, and
Pinkerton
,
A. J.
,
2011
, “
Microcomputed Tomography Analysis of Intralayer Porosity Generation in Laser Direct Metal Deposition and Its Causes
,”
J. Laser Appl.
,
23
(
2
), p.
022009
. 10.2351/1.3582311
4.
Vandenbroucke
,
B.
, and
Kruth
,
J. P.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyp. J.
,
13
(
4
), pp.
196
203
. 10.1108/13552540710776142
5.
Yadroitsev
,
I.
,
Thivillon
,
L.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2007
, “
Strategy of Manufacturing Components With Designed Internal Structure by Selective Laser Melting of Metallic Powder
,”
Appl. Surf. Sci.
,
254
(
4
), pp.
980
983
. 10.1016/j.apsusc.2007.08.046
6.
Kim
,
F. H.
,
Moylan
,
S. P.
,
Garboczi
,
E. J.
, and
Slotwinski
,
J. A.
,
2017
, “
Investigation of Pore Structure in Cobalt Chrome Additively Manufactured Parts Using X-Ray Computed Tomography and Three-Dimensional Image Analysis
,”
Addit. Manuf.
,
17
, pp.
23
38
. 10.1016/j.addma.2017.06.011
7.
Hrabe
,
N.
,
Barbosa
,
N.
,
Daniewicz
,
S.
, and
Shamsaei
,
N.
,
2016
,
Findings From the NIST/ASTM Workshop on Mechanical Behavior of Additive Manufacturing Components
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
8.
Todorov
,
E.
,
Spencer
,
R.
,
Gleeson
,
S.
,
Jamshidinia
,
M.
, and
Kelly
,
S. M.
,
2014
,
America Makes: National Additive Manufacturing Innovation Institute (NAMII) Project 1: Nondestructive Evaluation (NDE) of Complex Metallic Additive Manufactured (AM) Structures
,
Air Force Research Laboratory, OH
.
9.
Hermanek
,
P.
, and
Carmignato
,
S.
,
2017
, “
Porosity Measurements by X-Ray Computed Tomography: Accuracy Evaluation Using a Calibrated Object
,”
Precis. Eng.
,
49
, pp.
377
387
. 10.1016/j.precisioneng.2017.03.007
10.
Müller
,
P.
,
Hiller
,
J.
,
Cantore
,
A.
,
Bartscher
,
M.
, and
De Chiffre
,
L.
,
2012
, “
Investigation on the Influence of Image Quality in X-Ray CT Metrology
,”
Conference on Industrial Computed Tomography
,
Wels, Austria
,
Sept. 19–21
.
11.
Department of Defense
,
2009
,
Nondestructive Evaluation System Reliability Assessment
,
Department of Defense
.
12.
EOS GmbH—Electro Optical Systems
,
2009
, EOS StainlessSteel GP1 for EOSINT M 270.
13.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
,
Stutzman
,
P. E.
,
Ferraris
,
C. F.
,
Watson
,
S. S.
, and
Peltz
,
M. A.
,
2014
, “
Characterization of Metal Powders Used for Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
460
493
. 10.6028/jres.119.018
14.
Kim
,
F. H.
,
Villarraga-Gómez
,
H.
, and
Moylan
,
S. P.
,
2016
, “
Inspection of Embedded Internal Features in Additively Manufactured Metal Parts Using Metrological X-Ray Computed Tomography
,”
ASPE/Euspen 2016 Summer Topical Meeting Dimensional Accuracy and Surface Finish in Additive Manufacturing
,
Raleigh, NC
,
June 27–30
, pp.
191
195
.
15.
Box
,
G. E. P.
,
Hunter
,
J. S.
, and
Hunter
,
W. G.
,
2005
,
Statistics for Experimenters
,
Wiley-Interscience
.
16.
Flynn
,
M. J.
,
Hames
,
S. M.
,
Reimann
,
D. A.
, and
Wilderman
,
S. J.
,
1994
, “
Microfocus X-Ray Sources for 3D Microtomography
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
353
(
1
), pp.
312
315
. 10.1016/0168-9002(94)91664-0
17.
Hernandez
,
A. M.
, and
Boone
,
J. M.
,
2014
, “
Tungsten Anode Spectral Model Using Interpolating Cubic Splines: Unfiltered X-Ray Spectra From 20 kV to 640 kV
,”
Med. Phys.
,
41
(
4
), p.
042101
. 10.1118/1.4866216
18.
van Aarle
,
W.
,
Palenstijn
,
W. J.
,
Cant
,
J.
,
Janssens
,
E.
,
Bleichrodt
,
F.
,
Dabravolski
,
A.
,
De Beenhouwer
,
J.
,
Joost Batenburg
,
K.
, and
Sijbers
,
J.
,
2016
, “
Fast and Flexible X-Ray Tomography Using the ASTRA Toolbox
,”
Opt. Express
,
24
(
22
), pp.
25129
25147
. 10.1364/OE.24.025129
19.
van Aarle
,
W.
,
Palenstijn
,
W. J.
,
De Beenhouwer
,
J.
,
Altantzis
,
T.
,
Bals
,
S.
,
Batenburg
,
K. J.
, and
Sijbers
,
J.
,
2015
, “
The ASTRA Toolbox: A Platform for Advanced Algorithm Development in Electron Tomography
,”
Ultramicroscopy
,
157
(
Oct.
), pp.
35
47
. 10.1016/j.ultramic.2015.05.002
20.
Goldman
,
L. W.
,
2007
, “
Principles of CT: Radiation Dose and Image Quality
,”
J. Nucl. Med. Technol.
,
35
(
4
), pp.
213
225
. 10.2967/jnmt.106.037846
21.
ThermoFisher Scientific
,
2018
, Avizo 9.5.0.
22.
Kim
,
F. H.
,
Penumadu
,
D.
,
Gregor
,
J.
,
Marsh
,
M.
,
Kardjilov
,
N.
, and
Manke
,
I.
,
2015
, “
Characterizing Partially Saturated Compacted-Sand Specimen Using 3D Image Registration of High-Resolution Neutron and X-Ray Tomography
,”
J. Comput. Civ. Eng.
,
29
(
6
), p.
04014096
. 10.1061/(ASCE)CP.1943-5487.0000424
23.
Pluim
,
J. P. W.
,
Maintz
,
J. B. A.
, and
Viergever
,
M. A.
,
2003
, “
Mutual-Information-Based Registration of Medical Images: A Survey
,”
IEEE Trans. Med. Imaging
,
22
(
8
), pp.
986
1004
. 10.1109/TMI.2003.815867
24.
Brown
,
L. G.
,
1992
, “
A Survey of Image Registration Techniques
,”
ACM Comput. Surv.
,
24
(
4
), pp.
325
376
. 10.1145/146370.146374
25.
Maintz
,
J. B. A.
, and
Viergever
,
M. A.
,
1998
, “
A Survey of Medical Image Registration
,”
Med. Image Anal.
,
2
(
1
), pp.
1
36
. 10.1016/S1361-8415(98)80001-7
26.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection via the Lasso
,”
J. R. Stat. Soc. Ser. B (Methodological)
,
58
(
1
), pp.
267
288
. 10.1111/j.2517-6161.1996.tb02080.x
27.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2010
, “
Regularization Paths for Generalized Linear Models Via Coordinate Descent
,”
J. Stat. Software
,
33
(
1
), pp.
1
22
. 10.18637/jss.v033.i01
28.
R Core Team
,
2017
,
A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
.
29.
Jang
,
D. H.
, and
Anderson-Cook
,
C. M.
,
2017
, “
Examining Robustness of Model Selection With Half-Normal and LASSO Plots for Unreplicated Factorial Designs
,”
Qual. Reliab. Eng. Int.
,
33
(
8
), pp.
1921
1928
. 10.1002/qre.2156
30.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
. 10.1109/TSMC.1979.4310076
31.
Berens
,
A. P.
,
1989
,
NDE Reliability Data Analysis—Metals Handbook
,
ASM International
,
OH
.
32.
Volume Graphics
,
2018
, “
VG Studio Max 3.1
,” https://www.volumegraphics.com/.
33.
Reinhart
,
C.
,
2008
, “
Industrial Computer Tomography—A Universal Inspection Tool
,”
17th World Conference on Nondestructive Testing
,
Shanghai, China
,
Oct. 25–28
.
34.
JGGM 200
,
2012
,
International Vocabulary of Metrology–Basic and General Concepts and Associated Terms (VIM)
, 3rd ed.
35.
Müller
,
C.
,
Elaguine
,
M.
,
Bellon
,
C.
,
Ewert
,
U.
,
Zscherpel
,
U.
,
Scharmach
,
M.
, and
Redmer
,
B.
,
2006
, “
POD Evaluation of NDT Techniques for CU-Canisters for Risk Assessment of Nuclear Waste Encapsulation
,”
5th International Conference on NDE in Relation to Structural Intergrity for Nuclear and Pressurized Components
,
Berlin, Germany
,
May 10–12
.
36.
Egan
,
J. P.
,
1975
,
Signal Detection Theory and ROC Analysis
,
Academic Press
,
New York
.
37.
Metz
,
C. E.
,
1978
, “
Basic Principles of ROC Analysis
,”
Semin. Nucl. Med.
,
8
(
4
), pp.
283
298
. 10.1016/S0001-2998(78)80014-2
38.
Fawcett
,
T.
,
2006
, “
An Introduction to ROC Analysis
,”
Pattern Recognit. Lett.
,
27
(
8
), pp.
861
874
. 10.1016/j.patrec.2005.10.010
39.
Nyquist
,
H.
,
1928
, “
Certain Topics in Telegraph Transmission Theory
,”
Trans. Am. Inst. Electr. Eng.
,
47
(
2
), pp.
617
644
. 10.1109/T-AIEE.1928.5055024
40.
Fuller
,
W. A.
,
2009
,
Measurement Error Models
,
John Wiley & Sons
,
New York
.
41.
Efron
,
B.
, and
Tibshirani
,
R. J.
,
1993
,
An Introduction to the Bootstrap
,
Chapman and Hall/CRC
,
London
.
42.
Gregor
,
J.
, and
Benson
,
T.
,
2008
, “
Computational Analysis and Improvement of SIRT
,”
IEEE Trans. Med. Imaging
,
27
(
7
), pp.
918
924
. 10.1109/TMI.2008.923696
43.
Gregor
,
J.
, and
Fessler
,
J. A.
,
2015
, “
Comparison of SIRT and SQS for Regularized Weighted Least Squares Image Reconstruction
,”
IEEE Trans. Comput. Imaging
,
1
(
1
), pp.
44
55
. 10.1109/TCI.2015.2442511
44.
Gregor
,
J.
,
Bingham
,
P.
, and
Arrowood
,
L. F.
,
2016
, “
Total Variation Constrained Weighted Least Squares Using SIRT and Proximal Mappings
,”
4th International Conference on Image Formation in X-Ray Computed Tomography
,
Bamberg, Germany
,
July 18–22
.
You do not currently have access to this content.