Abstract

A parameter identification procedure for identifying the parameters of a volumetric error model of a large machine tool requires hundreds of random volumetric error components in its workspace and thus takes hours of measurement time. It causes thermal errors of a large machine difficult to be tracked and compensated periodically. This paper demonstrates the application of the optimal observation design theories to volumetric error model parameter identification of a large five-axis machine. Optimal designs maximize the amount of information carried in the observations. In this paper, K-optimal designs are applied for the construction of machine-tool error observers by determining locations in the workspace at which 80 components of volumetric errors to be measured so that the model parameters can be identified in 5% of an 8-h shift. Many of optimal designs tend to localize observations at the boundary of the workspace. This leaves large volumes of the workspace inadequately represented, making the identified model inadequate. Therefore, the constrained optimization algorithms that force the distribution of observation points in the machine’s workspace are developed. Optimal designs reduce the number of observations in the identification procedure. This opens up the possibility of tracking thermal variations of the volumetric error model with periodic measurements. The design, implementation, and performance of a constrained K-optimal in tracking the thermal variations of the volumetric error over a 400-min period of operation are also reported. About 70–80% of machine-tool error can be explained using the proposed thermal error modeling methodology.

References

1.
Kiridena
,
V. S. B.
, and
Ferreira
,
P. M.
,
1994
, “
Parameter Estimation and Model Verification of First Order Quasistatic Error Model for Three-Axis Machining Centers
,”
Int. J. Mach. Tools Manuf.
,
34
(
1
), pp.
101
125
. 10.1016/0890-6955(94)90043-4
2.
Okafor
,
A. C.
, and
Ertekin
,
Y. M.
,
2000
, “
Derivation of Machine Tool Error Models and Error Compensation Procedure for Three Axes Vertical Machining Center Using Rigid Body Kinematics
,”
Int. J. Mach. Tools Manuf.
,
40
(
8
), pp.
1199
1213
. 10.1016/S0890-6955(99)00105-4
3.
Lee
,
J. H.
,
Liu
,
Y.
, and
Yang
,
S.-H.
,
2006
, “
Accuracy Improvement of Miniaturized Machine Tool: Geometric Error Modeling and Compensation
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1508
1516
. 10.1016/j.ijmachtools.2005.09.004
4.
Zhu
,
S.
,
Ding
,
G.
,
Qin
,
S.
,
Lei
,
J.
,
Zhuang
,
L.
, and
Yan
,
K.
,
2012
, “
Integrated Geometric Error Modeling, Identification and Compensation of CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
24
29
. 10.1016/j.ijmachtools.2011.08.011
5.
Aguado
,
S.
,
Samper
,
D.
,
Santolaria
,
J.
, and
Aguilar
,
J. J.
,
2012
, “
Identification Strategy of Error Parameter in Volumetric Error Compensation of Machine Tool Based on Laser Tracker Measurements
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
160
169
. 10.1016/j.ijmachtools.2011.11.004
6.
Donmez
,
M. A.
,
Blomquist
,
D. S.
,
Hocken
,
R. J.
,
Liu
,
C. R.
, and
Barash
,
M. M.
,
1986
, “
A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,”
Precis. Eng.
,
8
(
4
), pp.
187
196
. 10.1016/0141-6359(86)90059-0
7.
MartíNez
,
S.
, and
Bullo
,
F.
,
2006
, “
Optimal Sensor Placement and Motion Coordination for Target Tracking
,”
Automatica
,
42
(
4
), pp.
661
668
. 10.1016/j.automatica.2005.12.018
8.
Lin
,
F. Y.
, and
Chiu
,
P. L.
,
2005
, “
A Near-Optimal Sensor Placement Algorithm to Achieve Complete Coverage-Discrimination in Sensor Networks
,”
IEEE Commun. Lett.
,
9
(
1
), pp.
43
45
.10.1109/lcomm.2005.1375236
9.
Krause
,
A.
,
Singh
,
A.
, and
Guestrin
,
C.
,
2008
, “
Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
,”
J. Mach. Learn. Res.
,
9
(
Feb
), pp.
235
284
.
10.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2006
, “
Stream-of-Variation (SoV)-Based Measurement Scheme Analysis in Multistation Machining Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
4
), pp.
407
422
. 10.1109/TASE.2006.876617
11.
Tajbakhsh
,
H.
,
Abadin
,
Z.
, and
Ferreira
,
P. M.
,
1997
, “
L∞ Parameter Estimates for Volumetric Error in Models of Machine Tools
,”
Precis. Eng.
,
20
(
3
), pp.
179
187
. 10.1016/S0141-6359(97)00030-5
12.
Mayr
,
J.
,
Jedrzejewski
,
J.
,
Uhlmann
,
E.
,
Alkan Donmez
,
M.
,
Knapp
,
W.
,
Härtigf
,
F.
,
Wendtf
,
K.
,
Moriwaki
,
T.
,
Shore
,
P.
,
Schmitt
,
R.
,
Brecher
,
C.
,
Würz
,
T.
, and
Wegener
,
K.
,
2012
, “
Thermal Issues in Machine Tools
,”
CIRP Ann.
,
61
(
2
), pp.
771
791
. 10.1016/j.cirp.2012.05.008
13.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2000
, “
Error Compensation in Machine Tools—a Review: Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1257
1284
. 10.1016/S0890-6955(00)00010-9
14.
Bryan
,
J.
,
1990
, “
International Status of Thermal Error Research
,”
CIRP Ann. Technol.
,
39
(
2
), pp.
645
656
. 10.1016/S0007-8506(07)63001-7
15.
Blaser
,
P.
,
Pavliček
,
F.
,
Mori
,
K.
,
Mayr
,
J.
,
Weikert
,
S.
, and
Wegener
,
K.
,
2017
, “
Adaptive Learning Control for Thermal Error Compensation of 5-Axis Machine Tools
,”
J. Manuf. Syst.
,
44
, pp.
302
309
. 10.1016/j.jmsy.2017.04.011
16.
Creighton
,
E.
,
Honegger
,
A.
,
Tulsian
,
A.
, and
Mukhopadhyay
,
D.
,
2010
, “
Analysis of Thermal Errors in a High-Speed Micro-Milling Spindle
,”
Int. J. Mach. Tools Manuf.
,
50
(
4
), pp.
386
393
. 10.1016/j.ijmachtools.2009.11.002
17.
Yang
,
H.
, and
Ni
,
J.
,
2005
, “
Dynamic Neural Network Modeling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
455
465
. 10.1016/j.ijmachtools.2004.09.004
18.
Srivastava
,
A. K.
,
Veldhuis
,
S. C.
, and
Elbestawit
,
M. A.
,
1995
, “
Modelling Geometric and Thermal Errors in a Five-Axis CNC Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
35
(
9
), pp.
1321
1337
. 10.1016/0890-6955(94)00048-O
19.
Kiridena
,
V.
, and
Ferreira
,
P. M.
,
1993
, “
Mapping the Effects of Positioning Errors on the Volumetric Accuracy of Five-Axis CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
33
(
3
), pp.
417
437
. 10.1016/0890-6955(93)90049-Z
20.
Ko
,
H. W.
,
Bazzoli
,
P.
,
Nisbett
,
J. A.
,
Ma
,
L.
,
Bristow
,
D.
,
Landers
,
R. G.
,
Chen
,
Y.
,
Kapoor
,
S. G.
, and
Ferreira
,
P. M.
,
2018
, “
Quasistatic Error Modeling and Model Testing for a 5-Axis Machine with a Redundant Axis
,”
J. Manuf. Process.
,
31
, pp.
875
883
. 10.1016/j.jmapro.2018.01.007
21.
Kiefer
,
J.
,
1959
, “
Optimum Experimental Designs
,”
J. R. Stat. Soc. Series B
,
21
(
2
), pp.
272
319
.
22.
Herzberg
,
A. M.
,
Wynn
,
H. P.
,
Fedorov
,
V. V.
,
Studden
,
W. J.
, and
Klimko
,
E. M.
,
1972
, “
Theory of Optimal Experiments
,”
Biometrika
,
59
(
3
), p.
697
. 10.2307/2334826
23.
Liu
,
C. Q.
,
Ding
,
Y.
, and
Chen
,
Y.
,
2005
, “
Optimal Coordinate Sensor Placements for Estimating Mean and Variance Components of Variation Sources
,”
IIE Trans.
,
37
(
9
), pp.
877
889
. 10.1080/07408170590969889
24.
Ye
,
J. J.
, and
Zhou
,
J.
,
2013
, “
Minimizing the Condition Number to Construct Design Points for Polynomial Regression Models
,”
SIAM J. Optim.
,
23
(
1
), pp.
666
686
. 10.1137/110850268
25.
Ferreira
,
P. M.
, and
Liu
,
C. R.
,
1993
, “
A Method for Estimating and Compensating Quasistatic Errors of Machine Tools
,”
J. Eng. Ind.
,
115
(
1
), pp.
149
159
. 10.1115/1.2901629
26.
Creamer
,
J.
,
Sammons
,
P. M.
,
Bristow
,
D. A.
,
Landers
,
R. G.
,
Freeman
,
P. L.
, and
Easley
,
S. J.
,
2017
, “
Table-Based Volumetric Error Compensation of Large Five-Axis Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021011
. 10.1115/1.4034399
You do not currently have access to this content.