Abstract

Additive manufacturing (AM) brings out a revolution of how the products are designed and manufactured. To obtain desired components, advanced design for additive manufacturing (ADfAM) is widely emphasized in geometry, material, and function design. 3D slicing and path planning, which are the critical steps of ADfAM, directly determine manufacturing process variables, shape, and performance of printed parts. For widely used planar slicing, the contradiction between accuracy and build time has attracted considerable attention and efforts, leading to various novel and optimization methods. Nevertheless, curved surfaces and slopes along the build direction constrain the surfaces to be smooth due to the inherent staircase effect of AM. Meanwhile, there is significant anisotropy of the printed piece making it sensitive to any shear (or bending) stress. Moreover, support structures for the overhang part are necessary when building along one direction, resulting in time-consuming and cost-expensive process. Due to the rapid development of 3D slicing and path planning, and various newly proposed methods, there is a lack of comprehensive knowledge. Notwithstanding, there are fewer literature reviews concerning planar slicing and filling strategy. Less attention has been paid to non-planar slicing, path planning on curved surfaces, and multi-degree of freedom (DOF) AM equipment, as well as printing under pressure. Hence, it is significant to get a comprehensive understanding of current status and challenges. Then, with suitable technologies, the printed parts with improved surface quality, minimum support structures, and better isotropy could be acquired. Finally, the recommendation for the future development of slicing and path planning is also provided.

References

1.
Bing-Henga
,
L. U.
, and
Di-Chenb
,
L. I.
,
2013
, “
Development of the Additive Manufacturing (3D Printing) Technology
,”
Mach. Build. Autom.
,
42
(
4
), pp.
1
4
.
2.
Upadhyay
,
M.
,
Sivarupan
,
T.
, and
El Mansori
,
M.
,
2017
, “
3D Printing for Rapid Sand Casting—A Review
,”
J. Manuf. Process.
,
29
, pp.
211
220
. 10.1016/j.jmapro.2017.07.017
3.
ASTM
,
2012
, “
Standard Terminology for Additive Manufacturing Technologies
,” F2792-12a, i, pp.
11
13
.
4.
Wohlers
,
T. T.
, and
Campbell
,
I.
(Specialist in Three Dimensional Printing),
Diegel
,
O.
, and
Kowen
,
J.
, “
Wohlers Report 2018 : 3D Printing and Additive Manufacturing State of the Industry : Annual Worldwide Progress Report
.”
5.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.
,
Springer-Verlag New York
. 10.1007/978-1-4939-2113-3
6.
Mohan Pandey
,
P.
,
Venkata Reddy
,
N.
, and
Dhande
,
S. G.
,
2003
, “
Slicing Procedures in Layered Manufacturing: A Review
,”
Rapid Prototyp. J.
,
9
(
5
), pp.
274
288
. 10.1108/13552540310502185
7.
Pan
,
Z.
,
Ding
,
D.
,
Wu
,
B.
,
Cuiuri
,
D.
,
Li
,
H.
, and
Norrish
,
J.
,
2018
, “
Arc Welding Processes for Additive Manufacturing: A Review
.”
8.
Yuan
,
L.
,
2008
, “
A Preliminary Research on Development of a Fibre-Composite, Curved FDM System
.”
9.
Umaras
,
E.
, and
Tsuzuki
,
M. S. G.
,
2017
, “
Additive Manufacturing—Considerations on Geometric Accuracy and Factors of Influence
,”
IFAC-PapersOnLine
50
(
1
), pp.
14940
14945
. 10.1016/j.ifacol.2017.08.2545
10.
Bähr
,
F.
, and
Westkämper
,
E.
,
2018
, “
Correlations Between Influencing Parameters and Quality Properties of Components Produced by Fused Deposition Modeling
,”
Procedia CIRP
,
72
(
1
),
1214
1219
. 10.1016/j.procir.2018.03.048
11.
Costa
,
A. E.
,
Ferreira da Silva
,
A.
, and
Sousa Carneiro
,
O.
,
2018
, “
A Study on Extruded Filament Bonding in Fused Filament Fabrication
,”
Rapid Prototyp. J.
,
25
(
3
), pp.
555
565
. 10.1108/rpj-03-2018-0062
12.
Jin
,
Y.
,
He
,
Y.
,
Fu
,
J.
,
Feng
,
W.
, and
Lin
,
Z. W.
,
2014
, “
Optimization of Tool-Path Generation for Material Extrusion-Based Additive Manufacturing Technology
,”
Addit. Manuf.
,
1–4
, pp.
32
47
. 10.1016/j.addma.2014.08.004
13.
Wah
,
P. K.
,
Murty
,
K. G.
,
Joneja
,
A.
, and
Chiu
,
L. C.
,
2002
, “
Tool Path Optimization in Layered Manufacturing
,”
IIE Trans.
,
34
(
4
), pp.
335
347
. 10.1080/07408170208928874
14.
Shujuan
,
L. I.
,
Yuan
,
Q.
,
Cao
,
S.
, and
Yan
,
M.
,
2015
, “
Modeling and Optimization of Three Dimensional Printing Direction for Complex Components (in Chineses)
,”
Ordnance Mater. Sci. Eng.
,
38
(
1
), pp.
58
63
.
15.
Xu
,
J.
,
Gu
,
X.
,
Ding
,
D.
,
Pan
,
Z.
, and
Chen
,
K.
,
2018
, “
A Review of Slicing Methods for Directed Energy Deposition Based Additive Manufacturing
,”
Rapid Prototyp. J.
,
24
(
6
), pp.
1012
1025
. 10.1108/RPJ-10-2017-0196
16.
Jones
,
J. B.
,
Wimpenny
,
D. I.
, and
Gibbons
,
G. J.
,
2015
, “
Additive Manufacturing Under Pressure
,”
Rapid Prototyp. J.
,
21
(
1
), pp.
89
97
. 10.1108/RPJ-02-2013-0016
17.
Qiu
,
X.
,
2013
, “
Effect of Rolling on Fatigue Crack Growth Rate of Wire and Arc Additive Manufacture (WAAM) Processed Titanium
,” M.Sc. thesis,
Cranfield University
,
Cranfield
.
18.
Zhang
,
H.
,
Wang
,
X.
,
Wang
,
G.
, and
Zhang
,
Y.
,
2013
, “
Hybrid Direct Manufacturing Method of Metallic Parts Using Deposition and Micro Continuous Rolling
,”
Rapid Prototyp. J.
,
19
(
6
), pp.
387
394
. 10.1108/RPJ-01-2012-0006
19.
Xie
,
Y.
,
Zhang
,
H.
, and
Zhou
,
F.
,
2016
, “
Improvement in Geometrical Accuracy and Mechanical Property for Arc-Based Additive Manufacturing Using Metamorphic Rolling Mechanism
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111002
. 10.1115/1.4032079
20.
Zhou
,
X.
,
Zhang
,
H.
,
Wang
,
G.
,
Bai
,
X.
,
Fu
,
Y.
, and
Zhao
,
J.
,
2016
, “
Simulation of Microstructure Evolution During Hybrid Deposition and Micro-Rolling Process
,”
J. Mater. Sci.
,
51
(
14
), pp.
6735
6749
. 10.1007/s10853-016-9961-0
21.
O’Connor
,
H. J.
, and
Dowling
,
D. P.
,
2018
, “
Evaluation of the Influence of Low Pressure Additive Manufacturing Processing Conditions on Printed Polymer Parts
,”
Addit. Manuf.
,
21
, pp.
404
412
. 10.1016/j.addma.2018.04.007
22.
Zhou
,
M. Y.
,
2004
, “
Path Planning of Functionally Graded Material Objects for Layered Manufacturing
,”
Int. J. Prod. Res.
,
42
(
2
), pp.
405
415
. 10.1080/00207540310001612350
23.
Li
,
Q.
, and
Xu
,
X. Y.
,
2015
, “
Self-Adaptive Slicing Algorithm for 3D Printing of FGM Components
,”
Mater. Res. Innov.
,
19
(
Suppl. 5
), pp.
S5-635
S5-641
. 10.1179/1432891714Z.0000000001167
24.
Nick-Parker/Bread: An Experimental Slicer for FFF 3D Printers
” [Online], https://github.com/nick-parker/Bread, Accessed June 19, 2017.
25.
Zhang
,
G. Q.
,
Mondesir
,
W.
,
Martinez
,
C.
,
Li
,
X.
,
Fuhlbrigge
,
T. A.
, and
Bheda
,
H.
,
2015
, “
Robotic Additive Manufacturing Along Curved Surface—A Step Towards Free-Form Fabrication
,”
2015 IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015
,
Zhuhai, China
,
Dec. 6–9
.
26.
Tsao
,
C.-C.
,
Chang
,
H.-H.
,
Liu
,
M.-H.
,
Chen
,
H.-C.
,
Hsu
,
Y.-T.
,
Lin
,
P.-Y.
,
Chou
,
Y.-L.
,
Chao
,
Y.-C.
,
Shen
,
Y.-H.
, and
Huang
,
C.-Y.
,
2018
, “
Freeform Additive Manufacturing by Vari-Directional Vari-Dimensional Material Deposition
,”
Rapid Prototyp. J.
,
24
(
2
), pp.
379
394
.
27.
Grutle
,
Ø. K.
,
2015
,
5-Axis 3D Printer
.
28.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021005
. 10.1115/1.4028897
29.
Wu
,
C.
,
Dai
,
C.
,
Fang
,
G.
,
Liu
,
Y. J.
, and
Wang
,
C. C. L.
,
2017
, “
RoboFDM: A Robotic System for Support-Free Fabrication Using FDM
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
.
30.
Xu
,
G.
,
He
,
P.
, and
Jiquan Yang
,
B. L.
,
2015
,
Open Source 3D Printing Technology Theory and Applications (in Chinese)
,
National Defense Industry Press, Beijing, China
.
31.
Blacksmith Genesis, All-in-One 3D Printer/Scanner/Copier
” [Online], http://www.3ders.org/articles/20140805-meet-blacksmith-genesis-all-in-one-3d-printer-scanner-copier.html, Accessed August 1, 2017.
32.
PiMaker 3D Printer by Wjsteele—Thingiverse
” [Online], https:https://www.3ders.org/articles/20121206-innovative-pimaker-has-a-build-area-larger-than-makerbot-replicator-2.html, Accessed June 27, 2017.
33.
Kubalak
,
J. R.
,
Wicks
,
A. L.
, and
Williams
,
C. B.
,
2018
, “
Exploring Multi-Axis Material Extrusion Additive Manufacturing for Improving Mechanical Properties of Printed Parts
,”
Rapid Prototyp. J.
,
25
(
2
), pp.
356
362
.10.1108/rpj-02-2018-0035
34.
Tiede
,
U.
,
Schiemann
,
T.
, and
Höhne
,
K.-H.
,
1998
, “
High Quality Rendering of Attributed Volume Data
,”
Proceedings Visualization’98 (Cat. No. 98CB36276)
,
Research Triangle Park, NC
,
Oct. 18–23
, pp.
255
262
.
35.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
. 10.1016/j.cad.2015.04.001
36.
Hartquist
,
E. E.
,
Menon
,
J. P.
,
Suresh
,
K.
,
Voelcker
,
H. B.
, and
Zagajac
,
J.
,
1999
, “
Computing Strategy for Applications Involving Offsets, Sweeps, and Minkowski Operations
,”
Comput. Aided Des.
,
31
(
3
), pp.
175
183
. 10.1016/S0010-4485(99)00014-7
37.
Zeng
,
L.
,
Lai
,
L. M. L.
,
Qi
,
D.
,
Lai
,
Y. H.
, and
Yuen
,
M. M. F.
,
2011
, “
Efficient Slicing Procedure Based on Adaptive Layer Depth Normal Image
,”
Comput. Aided Des.
,
43
(
12
), pp.
1577
1586
. 10.1016/j.cad.2011.06.007
38.
Ye
,
H.
,
Zhou
,
C.
, and
Xu
,
W.
,
2017
, “
Image-Based Slicing and Tool Path Planning for Hybrid Stereolithography Additive Manufacturing
,”
J. Manuf. Sci. Eng.
,
139
(
7
), p.
071006
.10.1115/1.4035795
39.
Jamieson
,
R.
, and
Hacker
,
H.
,
1995
, “
Direct Slicing of CAD Models for Rapid Prototyping
,”
Rapid Prototyp. J.
,
1
(
2
), pp.
4
12
. 10.1108/13552549510086826
40.
Qiu
,
Y.
,
Zhou
,
X.
, and
Qian
,
X.
,
2011
, “
Direct Slicing of Cloud Data With Guaranteed Topology for Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
255
265
. 10.1007/s00170-010-2829-6
41.
Kulkarni
,
P.
, and
Dutta
,
D.
,
1996
, “
An Accurate Slicing Procedure for Layered Manufacturing
,”
Comput. Aided Des.
,
28
(
9
), pp.
683
697
. 10.1016/0010-4485(95)00083-6
42.
Hope
,
R. L.
,
Roth
,
R. N.
, and
Jacobs
,
P. A.
,
1997
, “
Adaptive Slicing With Sloping Layer Surfaces
,”
Rapid Prototyp. J.
,
3
(
3
), pp.
89
98
. 10.1108/13552549710185662
43.
Hope
,
R. L.
,
Jacobs
,
P. A.
, and
Roth
,
R. N.
,
1997
, “
Rapid Prototyping With Sloping Surfaces
,”
Rapid Prototyp. J.
,
3
(
1
), pp.
12
19
. 10.1108/13552549710169246
44.
Pandey
,
P. M.
,
Reddy
,
N. V.
, and
Dhande
,
S. G.
,
2003
, “
Real Time Adaptive Slicing for Fused Deposition Modelling
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
61
71
. 10.1016/S0890-6955(02)00164-5
45.
Mani
,
K.
,
Kulkarni
,
P.
, and
Dutta
,
D.
,
1999
, “
Region-Based Adaptive Slicing
,”
Comput. Aided Des.
,
31
(
5
), pp.
317
333
. 10.1016/S0010-4485(99)00033-0
46.
Ma
,
W.
, and
He
,
P.
,
1999
, “
Adaptive Slicing and Selective Hatching Strategy for Layered Manufacturing
,”
J. Mater. Process. Technol.
,
89–90
(
Speical Issue
), pp.
191
197
. 10.1016/S0924-0136(99)00043-6
47.
Lee
,
K. H.
, and
Choi
,
K.
,
2000
, “
Generating Optimal Slice Data for Layered Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
16
(
4
), pp.
277
284
. 10.1007/s001700050157
48.
Ma
,
W.
,
But
,
W. C.
, and
He
,
P.
,
2004
, “
NURBS-Based Adaptive Slicing for Efficient Rapid Prototyping
,”
Comput. Aided Des.
,
36
(
13
), pp.
1309
1325
. 10.1016/j.cad.2004.02.001
49.
Wu
,
Y. F.
,
Wong
,
Y. S.
,
Loh
,
H. T.
, and
Zhang
,
Y. F.
,
2004
, “
Modelling Cloud Data Using an Adaptive Slicing Approach
,”
Comput. Aided Des.
,
36
(
3
), pp.
231
240
. 10.1016/S0010-4485(03)00097-6
50.
Yang
,
P.
, and
Qian
,
X.
,
2008
, “
Adaptive Slicing of Moving Least Squares Surfaces: Toward Direct Manufacturing of Point Set Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
3
), p.
031003
. 10.1115/1.2955481
51.
Oropallo
,
W.
,
Piegl
,
L. A.
,
Rosen
,
P.
, and
Rajab
,
K.
,
2017
, “
Generating Point Clouds for Slicing Free-Form Objects for 3-D Printing
,”
Comput. Aided. Des. Appl.
,
14
(
2
), pp.
242
249
. 10.1080/16864360.2016.1223443
52.
Oropallo
,
W.
,
Piegl
,
L. A.
,
Rosen
,
P.
, and
Rajab
,
K.
,
2017
, “
Point Cloud Computation for Object Slicing in 3-D Printing
,”
Comput. Aided. Des. Appl.
,
15
(
4
), pp.
1
8
.10.14733/cadconfp.2016.34-38
53.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
, and
van Duin
,
S.
,
2016
, “Advanced Design for Additive Manufacturing: 3D Slicing and 2D Path Planning,”,
New Trends in 3D Printing
,
IntechOpen
54.
Zhao
,
D.
, and
Guo
,
W.
,
2019
, “
Mixed-Layer Adaptive Slicing for Robotic Additive Manufacturing (AM) Based on Decomposing and Regrouping
,”
J. Intell. Manuf.
, pp.
1
18
. 10.1007/s10845-019-01490-z
55.
Koc
,
B.
,
Ma
,
Y.
, and
Lee
,
Y.
,
2000
, “
Smoothing STL Files by Max-Fit Biarc Curves for Rapid Prototyping
,”
Rapid Prototyp. J.
,
6
(
3
), pp.
186
205
. 10.1108/13552540010337065
56.
Tyberg
,
J.
, and
Bøhn
,
J. H.
,
1998
, “
Local Adaptive Slicing
,”
Rapid Prototyp. J.
,
4
(
3
), pp.
118
127
. 10.1108/13552549810222993
57.
Tata
,
K.
,
Fadel
,
G.
,
Bagchi
,
A.
, and
Aziz
,
N.
,
1998
, “
Efficient Slicing for Layered Manufacturing
,”
Rapid Prototyp. J.
,
4
(
4
), pp.
151
167
. 10.1108/13552549810239003
58.
Dolenc
,
A.
, and
Mäkelä
,
I.
,
1994
, “
Slicing Procedures for Layered Manufacturing Techniques
,”
Comput. Des.
,
26
(
2
), pp.
119
126
. doi.org/10.1016/0010-4485(94)90032-9
59.
Cormier
,
D.
,
Unnanon
,
K.
, and
Sanii
,
E.
,
2000
, “
Specifying Non-Uniform Cusp Heights as a Potential Aid for Adaptive Slicing
,”
Rapid Prototyp. J.
,
6
(
3
), pp.
204
212
. 10.1108/13552540010337074
60.
Yansheng
,
L. I.
,
Shang
,
Y.
,
Yuan
,
Y.
,
Chen
,
J.
,
Dongfang
,
L. I.
,
Ying
,
W.
,
Liu
,
C.
, and
Yang
,
D.
,
2016
, “
File Formats of 3D Printing Technology (in Chinese)
,”
J. Beijing Univ. Technol.
,
42
(
7
), pp.
1009
1016
.
61.
Zhao
,
B.
,
2016
, “
Research on the Generation of Truss Structure Based 3D Printing Lightweight Model
,”
Zhejiang University
.
62.
Huang
,
P.
,
Wang
,
C. C. L.
, and
Chen
,
Y.
,
2013
, “
Intersection-Free and Topologically Faithful Slicing of Implicit Solid
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021009
. 10.1115/1.4024067
63.
Li
,
N.
,
Cheng
,
J. H.
, and
Yang
,
J. Q.
,
2015
, “
Research on Ray-NURBS Slicing Method Directly from Point Cloud for 3DP (in Chinese)
,”
Mechanical Science and Technology for Aerospace Engineering
,
34
(
2
), pp.
242
246
.
64.
Chen
,
Y.
,
Li
,
K.
, and
Qian
,
X.
,
2013
, “
Direct Geometry Processing for Telefabrication
,”
J. Comput. Inf. Sci. Eng
,
13
(
4
), pp.
041002-1
041002-15
. 10.1115/1.4024912
65.
Choi
,
S. H.
, and
Kwok
,
K. T.
,
2002
, “
A Tolerant Slicing Algorithm for Layered Manufacturing
,”
Rapid Prototyp. J.
,
8
(
3
), pp.
161
179
. 10.1108/13552540210430997
66.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2016
, “
Implicit Slicing for Functionally Tailored Additive Manufacturing
,”
Comput. Aided Des.
,
77
, pp.
107
119
. 10.1016/j.cad.2016.04.003
67.
Gohari
,
H.
,
Barari
,
A.
, and
Kishawy
,
H.
,
2016
, “
Using Multistep Methods in Slicing 2½ Dimensional Parametric Surfaces for Additive Manufacturing Applications
,”
IFAC-PapersOnLine
,
49
(
31
), pp.
67
72
. 10.1016/j.ifacol.2016.12.163
68.
Huang
,
B.
, and
Singamneni
,
S. B.
,
2015
, “
Curved Layer Adaptive Slicing (CLAS) for Fused Deposition Modelling
,”
Rapid Prototyp. J.
,
21
(
4
), pp.
354
367
. 10.1108/RPJ-06-2013-0059
69.
Nadiyapara
,
H. H.
, and
Pande
,
S.
,
2017
, “
A Review of Variable Slicing in Fused Deposition Modeling
,”
J. Inst. Eng. Ser. C
,
98
(
3
), pp.
387
393
. 10.1007/s40032-016-0272-7
70.
Yuk
,
H.
, and
Zhao
,
X.
,
2018
, “
A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks
,”
Adv. Mater.
,
30
(
6
), p.
1704028
. 10.1002/adma.201704028
71.
Gebhardt
,
A.
, and
Hötter
,
J.-S.
,
2016
,
Additive manufacturing: 3D printing for prototyping and manufacturing
,
Carl Hanser Verlag GmbH Co KG
.
72.
Rosa
,
F.
, and
Graziosi
,
S.
,
2019
, “
A Parametric and Adaptive Slicing (PAS) Technique: General Method and Experimental Validation
,”
Rapid Prototyp. J.
,
25
(
1
), pp.
126
142
. 10.1108/rpj-11-2016-0184
73.
Zhao
,
D.
, and
Guo
,
W.
,
2018
, “
Research on Curved Layer Fused Deposition Modeling (CLFDM) With Variable Extruded Filament (VEF)
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec
,
Aug. 26–29
, p.
V004T05A015
.
74.
Hongxia
,
L.
,
2014
, “
A Study of Optimization of Slicing Direction and Slicing Algorithm in 3D Printing
,”
Xidian University
.
75.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
Larkin
,
N.
, and
Van Duin
,
S.
,
2016
, “
Automatic Multi-Direction Slicing Algorithms for Wire Based Additive Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
37
, pp.
130
150
. 10.1016/j.rcim.2015.09.002
76.
Singh
,
P.
, and
Dutta
,
D.
,
2001
, “
Multi-Direction Slicing for Layered Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
2
), pp.
129
142
. 10.1115/1.1375816
77.
Yang
,
Y.
,
Fuh
,
J. Y. H.
,
Loh
,
H. T.
, and
Wong
,
Y. S.
,
2003
, “
Multi-Orientational Deposition to Minimize Support in the Layered Manufacturing Process
,”
J. Manuf. Syst.
,
22
(
2
), pp.
116
129
. 10.1016/S0278-6125(03)90009-4
78.
Singh
,
P.
, and
Dutta
,
D.
,
2008
, “
Offset Slices for Multidirection Layered Deposition
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011011
. 10.1115/1.2783217
79.
Dwivedi
,
R.
, and
Kovacevic
,
R.
,
2005
, “
Process Planning for Multi-Directional Laser-Based Direct Metal Deposition
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
219
(
7
), pp.
695
707
. 10.1243/095440605X31535
80.
Ren
,
L.
,
Sparks
,
T.
,
Ruan
,
J.
, and
Liou
,
F.
,
2008
, “
Process Planning Strategies for Solid Freeform Fabrication of Metal Parts
,”
J. Manuf. Syst.
,
27
(
4
), pp.
158
165
. 10.1016/j.jmsy.2009.02.002
81.
Ruan
,
J.
,
Eiamsa-ard
,
K.
, and
Liou
,
F. W.
,
2005
, “
Automatic Multi-Axis Slicing Based on Centroidal Axis Computation
,”
Volume 3: 25th Computers and Information in Engineering Conference, Parts A and B
,
Long Beach, CA
,
Sept. 24–28
.
82.
Zhang
,
J.
,
2004
, “
Adaptive Slicing for a Multi-Axis Laser Aided Manufacturing Process
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
254
261
. 10.1115/1.1649966
83.
Kanakanala
,
D.
,
Routhu
,
S.
,
Ruan
,
J.
,
Liu
,
X. F.
, and
Liou
,
F. B. T.-A.
,
2010
, “
A Multi-Axis Slicing Method for Direct Laser Deposition Process
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
.
84.
Lee
,
K.
, and
Jee
,
H.
,
2015
, “
Slicing Algorithms for Multi-Axis 3-D Metal Printing of Overhangs
,”
J. Mech. Sci. Technol.
,
29
(
12
), pp.
5139
5144
. 10.1007/s12206-015-1113-y
85.
Wang
,
X.
,
Zhang
,
H.
,
Wang
,
G.
, and
Wu
,
L.
,
2014
, “
Adaptive Slicing for Multi-Axis Hybrid Plasma Deposition and Milling
,”
Proceedings of the 2014 Annual International Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
86.
Gao
,
W.
,
Zhang
,
Y.
,
Nazzetta
,
D. C.
,
Ramani
,
K.
, and
Cipra
,
R. J.
,
2015
, “
RevoMaker: Enabling Multi-Directional and Functionally-Embedded 3D Printing Using a Rotational Cuboidal Platform
,”
Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology—UIST’15
,
Charlotte, NC, USA
,
Nov. 11–15
.
87.
Patel
,
Y.
,
Kshattriya
,
A.
,
Singamneni
,
S. B.
, and
Choudhury
,
A. R.
,
2015
, “
Application of Curved Layer Manufacturing for Preservation of Randomly Located Minute Critical Surface Features in Rapid Prototyping
,”
Rapid Prototyp. J.
,
21
(
6
), pp.
725
734
. 10.1108/RPJ-07-2013-0073
88.
Huang
,
B.
, and
Singamneni
,
S.
,
2013
, “
Curved Layer Fused Deposition Modeling With Varying Raster Orientations
,”
Appl. Mech. Mater.
,
446–447
, pp.
263
269
. www.scientific.net/AMM.446-447.263
89.
Allen
,
R. J. A.
, and
Trask
,
R. S.
,
2015
, “
An Experimental Demonstration of Effective Curved Layer Fused Filament Fabrication Utilising a Parallel Deposition Robot
,”
Addit. Manuf.
,
8
, pp.
78
87
. 10.1016/j.addma.2015.09.001
90.
Lim
,
S.
,
Buswell
,
R. A.
,
Valentine
,
P. J.
,
Piker
,
D.
,
Austin
,
S. A.
, and
De Kestelier
,
X.
,
2016
, “
Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components
,”
Addit. Manuf.
,
12
(
Part B
), pp.
216
230
. 10.1016/j.addma.2016.06.004
91.
Ding
,
Y.
,
Dwivedi
,
R.
, and
Kovacevic
,
R.
,
2017
, “
Process Planning for 8-Axis Robotized Laser-Based Direct Metal Deposition System: A Case on Building Revolved Part
,”
Robot. Comput. Integr. Manuf.
,
44
, pp.
67
76
. 10.1016/j.rcim.2016.08.008
92.
Huang
,
B.
, and
Singamneni
,
S.
,
2015
, “
A Mixed-Layer Approach Combining Both Flat and Curved Layer Slicing for Fused Deposition Modelling
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
229
(
12
), pp.
2238
2249
. 10.1177/0954405414551076
93.
Zhao
,
G.
,
Ma
,
G.
,
Feng
,
J.
, and
Xiao
,
W.
,
2018
, “
Nonplanar Slicing and Path Generation Methods for Robotic Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3149
3159
. 10.1007/s00170-018-1772-9
94.
Kalmanovich
,
G.
,
Dodin
,
L.
, and
Tu
,
S.
,
1997
, “
‘Curved-Layer’ Laminated Object Manufacturing
,”
1996 International Solid Freeform Fabrication Symposium
,
The University of Texas at Austin
.
95.
Kerschbaumer
,
M.
,
Ernst
,
G.
, and
O’Leary
,
P.
,
2018
, “
Tool Path Generation for 3D Laser Cladding Using Adaptive Slicing Technology
,” p.
604
.
96.
Chakraborty
,
D.
,
Aneesh Reddy
,
B.
, and
Roy Choudhury
,
A.
,
2008
, “
Extruder Path Generation for Curved Layer Fused Deposition Modeling
,”
Comput. Aided Des.
,
40
(
2
), pp.
235
243
. 10.1016/j.cad.2007.10.014
97.
Jin
,
Y.
,
Du
,
J.
,
He
,
Y.
, and
Fu
,
G.
,
2017
, “
Modeling and Process Planning for Curved Layer Fused Deposition
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
273
285
. 10.1007/s00170-016-9743-5
98.
Jung
,
J. Y.
, and
Ahluwalia
,
R. S.
,
2005
, “
NC Tool Path Generation for 5-Axis Machining of Free Formed Surfaces
,”
J. Intell. Manuf.
,
16
(
1
), pp.
115
127
. 10.1007/s10845-005-4828-2
99.
Huang
,
B.
, and
Singamneni
,
S.
,
2009
, “
Development of a Software Procedure for Curved Layered Fused Deposition Modelling (CLFDM)
.”
100.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
, and
Larkin
,
N.
,
2016
, “
Adaptive Path Planning for Wire-Feed Additive Manufacturing Using Medial Axis Transformation
,”
J. Clean. Prod.
,
133
(
1
), pp.
942
952
. 10.1016/j.jclepro.2016.06.036
101.
Koc
,
B.
, and
Lee
,
Y. S. B. T.-A.
,
2002
, “
Adaptive Ruled Layer Approximation and Slicing for 3D Rapid Prototyping
,”
ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference
,
Montreal, Canada
,
Sept. 29–Oct. 2
.
102.
Taufik
,
M.
, and
Jain
,
P. K.
,
2015
, “
A Study of Build Edge Profile for Prediction of Surface Roughness in Fused Deposition Modeling
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061002
.10.1115/1.4032193
103.
Turner
,
B. N.
, and
Gold
,
S. A.
,
2015
, “
A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness
,”
Rapid Prototyp. J.
,
21
(
3
) pp.
250
261
.10.1108/rpj-02-2013-0017
104.
Livesu
,
M.
,
Ellero
,
S.
,
Martínez
,
J.
,
Lefebvre
,
S.
, and
Attene
,
M.
,
2017
, “
From 3D Models to 3D Prints: An Overview of the Processing Pipeline
,”
Comput. Graph. Forum
,
36
(
2
), pp.
537
564
.10.1111/cgf.13147
105.
Ahn
,
D.
,
Kweon
,
J. H.
,
Kwon
,
S.
,
Song
,
J.
, and
Lee
,
S.
,
2009
, “
Representation of Surface Roughness in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
209
(
15–16
), pp.
5593
5600
. 10.1016/j.jmatprotec.2009.05.016
106.
Shembekar
,
A. V.
,
Yoon
,
Y. J.
,
Kanyuck
,
A.
, and
Gupta
,
S. K.
,
2018
, “
Trajectory Planning for Conformal 3D Printing Using Non-Planar Layers
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2018
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
107.
Slic3r Manual—Welcome to the Slic3r Manual
” [Online], http://manual.slic3r.org/, Accessed June 26, 2017.
108.
Ding
,
D. H.
,
Pan
,
Z. X.
,
Dominic
,
C.
, and
Li
,
H. J.
,
2015
, “
Process Planning Strategy for Wire and ARC Additive Manufacturing
,”
Adv. Intell. Syst. Comput.
,
363
, pp.
437
450
. 10.1007/978-3-319-18997-0_37
109.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
A Practical Path Planning Methodology for Wire and Arc Additive Manufacturing of Thin-Walled Structures
,”
Robot. Comput. Integr. Manuf.
,
34
, pp.
8
19
. 10.1016/j.rcim.2015.01.003
110.
Wang
,
T.
,
2015
, “
The Research and Implement of Slicing and Path Planning Algorithm in 3D Printing Technology
,”
Heibei University of Technology
.
111.
Dunlavey
,
M. R.
,
1983
, “
Efficient Polygon-Filling Algorithms for Raster Displays
,”
ACM Trans. Graph.
,
2
(
4
), pp.
264
273
. 10.1145/245.248
112.
Rajan
,
V. T.
,
Srinivasan
,
V.
, and
Tarabanis
,
K. A.
,
2001
, “
The Optimal Zigzag Direction for Filling a Two-Dimensional Region
,”
Rapid Prototyp. J.
,
7
(
5
), pp.
231
241
. 10.1108/13552540110410431
113.
Park
,
S. C.
, and
Choi
,
B. K.
,
2000
, “
Tool-Path Planning for Direction-Parallel Area Milling
,”
Comput. Aided Des.
,
32
(
1
), pp.
17
25
. 10.1016/S0010-4485(99)00080-9
114.
Han
,
J.
,
Ge
,
Y.
,
Mao
,
Y.
, and
Wu
,
M.
,
2018
, “
A Study on the Surface Quality of the 3D Printed Parts Caused by the Scanning Strategy
,”
Rapid Prototyp. J.
,
25
(
2
), pp.
247
254
. 10.1108/rpj-06-2017-0125
115.
Cheng
,
B.
,
Shrestha
,
S.
, and
Chou
,
K.
,
2016
, “
Stress and Deformation Evaluations of Scanning Strategy Effect in Selective Laser Melting
,”
Addit. Manuf.
,
12
(
Part B
), pp.
240
251
. 10.1016/j.addma.2016.05.007
116.
Alsoufi
,
M. S.
, and
Elsayed
,
A. E.
,
2018
, “
Surface Roughness Quality and Dimensional Accuracy—A Comprehensive Analysis of 100% Infill Printed Parts Fabricated by a Personal/Desktop Cost-Effective FDM 3D Printer
,”
Mater. Sci. Appl.
,
9
(
1
), pp.
11
40
. 10.4236/msa.2018.91002
117.
Akhoundi
,
B.
, and
Behravesh
,
A. H.
,
2019
, “
Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products
,”
Exp. Mech.
,
59
(
6
), pp.
1
15
. 10.1007/s11340-018-00467-y
118.
Yang
,
Y.
,
Loh
,
H. T.
,
Fuh
,
J. Y. H.
, and
Wang
,
Y. G.
,
2002
, “
Equidistant Path Generation for Improving Scanning Efficiency in Layered Manufacturing
,”
Rapid Prototyp. J.
,
8
(
1
), pp.
30
37
. 10.1108/13552540210413284
119.
Ren
,
F.
,
Sun
,
Y.
, and
Guo
,
D.
,
2009
, “
Combined Reparameterization-Based Spiral Toolpath Generation for Five-Axis Sculptured Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
40
(
7–8
), pp.
760
768
. 10.1007/s00170-008-1385-9
120.
Jin
,
G. Q.
,
Li
,
W. D.
, and
Gao
,
L.
,
2013
, “
An Adaptive Process Planning Approach of Rapid Prototyping and Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
29
(
1
), pp.
23
38
. 10.1016/j.rcim.2012.07.001
121.
Chao
,
Y.
,
2016
, “
Research on 3D Printing Path Planning Technology Based on FDM Technology
,”
ChangChun University of Technology
.
122.
Jin
,
Y.-A.
,
He
,
Y.
,
Xue
,
G.-H.
, and
Fu
,
J.-Z.
,
2014
, “
A Parallel-Based Path Generation Method for Fused Deposition Modeling
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
927
937
. 10.1007/s00170-014-6530-z
123.
Bertoldi
,
M.
,
Yardimci
,
M. A.
,
Pistor
,
C. M.
, and
Guceri
,
S. I.
,
1998
, “
Domain Decomposition and Space Filling Curves in Toolpath Planning and Generation
.”
124.
Dwivedi
,
R.
, and
Kovacevic
,
R.
,
2004
, “
Automated Torch Path Planning Using Polygon Subdivision for Solid Freeform Fabrication Based on Welding
,”
J. Manuf. Syst.
,
23
(
4
), pp.
278
291
. 10.1016/S0278-6125(04)80040-2
125.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2014
, “
A Tool-Path Generation Strategy for Wire and Arc Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
173
183
. 10.1007/s00170-014-5808-5
126.
Jin
,
Y.
,
He
,
Y.
, and
Shih
,
A.
,
2016
, “
Process Planning for the Fuse Deposition Modeling of Ankle-Foot-Othoses
,”
Procedia CIRP
,
42
, pp.
760
765
. 10.1016/j.procir.2016.02.315
127.
Jin
,
Y.
,
He
,
Y.
, and
Du
,
J.
,
2017
, “
A Novel Path Planning Methodology for Extrusion-Based Additive Manufacturing of Thin-Walled Parts
,”
Int. J. Comput. Integr. Manuf.
,
30
(
12
), pp.
1
15
. 10.1080/0951192X.2017.1307526
128.
Jin
,
Y.
,
He
,
Y.
,
Fu
,
G.
,
Zhang
,
A.
, and
Du
,
J.
,
2017
, “
A Non-Retraction Path Planning Approach for Extrusion-Based Additive Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
48
, pp.
132
144
. 10.1016/j.rcim.2017.03.008
129.
Zhao
,
H.
,
Chen
,
B.
,
Gu
,
F.
,
Huang
,
Q.-X.
,
Garcia
,
J.
,
Chen
,
Y.
,
Tu
,
C.
,
Benes
,
B.
,
Zhang
,
H.
, and
Cohen-Or
,
D.
,
2016
, “
Connected Fermat Spirals for Layered Fabrication
,”
ACM Trans. Graph.
,
35
(
4
), pp.
1
10
.10.1145/2897824.2925958
130.
Lin
,
Z.
,
Fu
,
J.
,
Shen
,
H.
,
Gan
,
W.
, and
Yue
,
S.
,
2015
, “
Tool Path Generation for Multi-Axis Freeform Surface Finishing Based on the LKH TSP Solver
,”
Comput. Des.
,
69
, pp.
51
61
. 10.1016/j.cad.2015.07.002
131.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
Van Duin
,
S.
, and
Larkin
,
N.
,
2016
, “
Bead Modelling and Implementation of Adaptive MAT Path in Wire and Arc Additive Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
39
, pp.
32
42
. 10.1016/j.rcim.2015.12.004
132.
Dan
,
B. C.
,
Zhang
,
F. T.
, and
Lei
,
G. L.
,
2011
, “
Arithmetic Research for Generating Tool Path of Space-Filling Curves Based on Subdivision Meshes Surface (in Chinese)
,”
Mach. Des. Manuf.
,
7
, p.
38
.
133.
Dan
,
B. C.
, and
De-Xin
,
L. I.
,
2009
, “
Research of Tool Path Planning for Free-Form Surface Based on the Hilbert's Space Filling Curve (in Chinese)
,”
Mach. Des. Manuf.
,
7
, pp.
233
235
.
134.
Llewellyn-Jones
,
T.
,
Allen
,
R.
, and
Trask
,
R.
,
2016
, “
Curved Layer Fused Filament Fabrication Using Automated Toolpath Generation
,”
3D Print. Addit. Manuf.
,
3
(
4
), pp.
236
243
. 10.1089/3dp.2016.0033
135.
Grunenfelder
,
L. K.
,
Milliron
,
G.
,
Herrera
,
S.
,
Gallana
,
I.
,
Yaraghi
,
N.
,
Hughes
,
N.
,
Evans-Lutterodt
,
K.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2018
, “
Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles
,”
Adv. Mater.
,
30
(
9
), p.
1705295
. 10.1002/adma.201705295
136.
Zhao
,
C.
,
Ren
,
L.
,
Liu
,
Q.
, and
Liu
,
T.
,
2015
, “
Morphological and Confocal Laser Scanning Microscopic Investigations of the Adductor Muscle-Shell Interface in Scallop
,”
Microsc. Res. Tech.
,
78
(
9
), pp.
761
770
. 10.1002/jemt.22537
137.
Zhao
,
C.
,
2017
, “
Biomimetic Design and 3D Printing of Composite by Coupling Heterogeneous Materials and Microstructures
,”
Jilin University, M1—Doctor
.
138.
Nebelsick
,
J. H.
,
Allgaier
,
C.
,
Felbrich
,
B.
,
Coupek
,
D.
,
Reiter
,
R.
,
Reiter
,
G.
,
Menges
,
A.
,
Lechler
,
A.
, and
Wurst
,
K. H.
,
2016
,
Continuous Fused Deposition Modelling of Architectural Envelopes Based on the Shell Formation of Molluscs: A Research Review
,
Springer International Publishing
,
New York
.
139.
Bidanda
,
B.
, and
Bártolo
,
P.
,
2008
,
Virtual Prototyping and Bio Manufacturing in Medical Applications
,
Springer Nature Switzerland AG
. 10.1007/978-0-387-68831-2
140.
Leary
,
M.
,
Merli
,
L.
,
Torti
,
F.
,
Mazur
,
M.
, and
Brandt
,
M.
,
2014
, “
Optimal Topology for Additive Manufacture: A Method for Enabling Additive Manufacture of Support-Free Optimal Structures
,”
Mater. Des.
,
63
, pp.
678
690
. 10.1016/j.matdes.2014.06.015
141.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing-Approaching Bone-Like Porous Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
24
(
2
), pp.
1127
1140
. 10.1109/TVCG.2017.2655523
142.
Wu
,
J.
,
Clausen
,
A.
, and
Sigmund
,
O.
,
2017
, “
Minimum Compliance Topology Optimization of Shell–Infill Composites for Additive Manufacturing
,”
Comput. Methods Appl. Mech. Eng.
,
326
(
1
), pp.
358
375
. 10.1016/j.cma.2017.08.018
143.
Campagna
,
F.
, and
Diaz
,
A. R.
,
2017
, “
Optimization of Lattice Infill Distribution in Additive Manufacturing
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
.
144.
Slic3r Manual—Infill Patterns and Density
” [Online], https://manual.slic3r.org/expert-mode/print-settings#infill-patterns, Accessed July 31, 2017.
145.
Vanek
,
J.
,
Galicia
,
J. A. G.
, and
Benes
,
B.
,
2014
, “
Clever Support: Efficient Support Structure Generation for Digital Fabrication
,”
Comput. Graph. Forum
,
33
(
5
), pp.
117
125
. 10.1111/cgf.12437
146.
Liu
,
J.
, and
Yu
,
H.
,
2017
, “
Concurrent Deposition Path Planning and Structural Topology Optimization for Additive Manufacturing
,”
Rapid Prototyp. J.
,
23
(
5
), pp.
930
942
.10.1108/rpj-05-2016-0087
147.
Tam
,
K.-M. M.
, and
Mueller
,
C. T.
,
2017
, “
Additive Manufacturing Along Principal Stress Lines
,”
3D Print. Addit. Manuf.
,
4
(
2
), pp.
63
81
. 10.1089/3dp.2017.0001
148.
Dreifus
,
G.
,
Goodrick
,
K.
,
Giles
,
S.
,
Patel
,
M.
,
Foster
,
R. M.
,
Williams
,
C.
,
Lindahl
,
J.
,
Post
,
B.
,
Roschli
,
A.
,
Love
,
L.
, and
Kunc
,
V.
,
2017
, “
Path Optimization Along Lattices in Additive Manufacturing Using the Chinese Postman Problem
,”
3D Print. Addit. Manuf.
,
4
(
2
), pp.
98
104
. 10.1089/3dp.2017.0007
149.
Wikipedia, 2016, Onion—Wikipedia, the Free Encyclopedia
” [Online], https://en.wikipedia.org/wiki/Main_Page, Accessed August 4, 2017.
150.
Zhao
,
D.
,
Guo
,
W.
, and
Gao
,
F.
,
2019
, “
Research on Curved Layer Fused Deposition Modeling (CLFDM) With a Variable Extruded Filament (VEF)
,”
J. Comput. Inf. Sci. Eng.
, Under review.
151.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
152.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
465
481
. 10.1007/s00170-015-7077-3
153.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
. 10.1179/1743280411Y.0000000014
154.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann. Manuf. Technol.
,
52
(
2
), pp.
589
609
. 10.1016/S0007-8506(07)60206-6
155.
Zhang
,
H.
,
Xu
,
J.
, and
Wang
,
G.
,
2003
, “
Fundamental Study on Plasma Deposition Manufacturing
,”
Surf. Coatings Technol.
,
171
(
1–3
), pp.
112
118
. 10.1016/S0257-8972(03)00250-0
156.
Bott
,
R.
,
2014
,
Secrets of 5-Axis Machining
,
Industrial Press, Inc. New York, America
.
157.
Raney
,
J. R.
,
Compton
,
B. G.
,
Mueller
,
J.
,
Ober
,
T. J.
,
Shea
,
K.
, and
Lewis
,
J. A.
,
2018
, “
Rotational 3D Printing of Damage-Tolerant Composites With Programmable Mechanics
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
6
), pp.
201715157
. 10.1073/pnas.1715157115
158.
Jin
,
Y. A.
,
Li
,
H.
,
He
,
Y.
, and
Fu
,
J. Z.
,
2015
, “
Quantitative Analysis of Surface Profile in Fused Deposition Modelling
,”
Addit. Manuf.
,
8
, pp.
142
148
. 10.1016/j.addma.2015.10.001
159.
Klosterman
,
D. A.
,
Chartoff
,
R. P.
,
Osborne
,
N. R.
,
Graves
,
G. A.
,
Lightman
,
A.
,
Han
,
G.
,
Bezeredi
,
A.
, and
Rodrigues
,
S.
,
1999
, “
Development of a Curved Layer LOM Process for Monolithic Ceramics and Ceramic Matrix Composites
,”
Rapid Prototyp. J.
,
5
(
2
), pp.
61
71
. 10.1108/13552549910267362
You do not currently have access to this content.