Abstract

Computational modeling and simulation are employed to study a rotating susceptor vertical impinging chemical vapor deposition (CVD) reactor to predict GaN film deposition. Many metal-organic chemical vapor deposition reactor manufacturers use prior experience to design and fabricate CVD reactors without a fundamental basis for the process and information on the optimal conditions for the deposition. Through trial and error, they fine tune the gas flow parameters, heater temperatures, chamber pressure, and concentration of species gases for optimal growth. However, expensive raw precursor gas and time are wasted through this method. A computational model is an important step in the CVD reactor design and GaN growth prediction. It can be used to model and optimize the reactor to yield favorable operating conditions. In this paper, a simple geometry consisting of a rotating susceptor and flow guide is considered. The focus is on gallium nitride (GaN) thin films. The study shows how the computational model can benefit reactor design. It also presents comparisons between model prediction results and experimental data from a physical, practical, system. Commercially available software is used, with appropriate modifications, and the results obtained are discussed in detail.

References

1.
Mahajan
,
R. L.
,
1996
, “
Transport Phenomena in Chemical Vapor Deposition Systems
,”
Adv. Heat Transfer
,
28
, pp.
339
425
. 10.1016/S0065-2717(08)70143-6
2.
Jaluria
,
Y.
,
2018
,
Advanced Materials Processing and Manufacturing
,
Springer
,
Cham, Switzerland
.
3.
Chattopadhyay
,
S.
,
Ganguly
,
A.
,
Chen
,
K.
, and
Chen
,
L.
,
2009
, “
One-Dimensional Group III-Nitrides: Growth, Properties, and Applications in Nanosensing and Nano-Optoelectronics
,”
Crit. Rev. Solid State Mat. Sci.
,
34
, pp.
224
279
. 10.1080/10408430903352082
4.
Mazumder
,
S.
, and
Lowry
,
S. A.
,
2001
, “
The Importance of Predicting Rate-Limited Growth for Accurate Modeling of Commercial MOCVD Reactors
,”
J. Cryst. Growth
,
224
, pp.
165
174
. 10.1016/S0022-0248(01)00813-2
5.
Sengupta
,
D.
,
Mazumder
,
S.
,
Kuykendall
,
W.
, and
Lowry
,
S. A.
,
2005
, “
Combined ab Initio Quantum Chemistry and Computational Fluid Dynamics Calculations for Prediction of Gallium Nitride Growth
,”
J. Cryst. Growth
,
279
, pp.
369
382
. 10.1016/j.jcrysgro.2005.02.036
6.
Hirako
,
A.
,
Kusakabe
,
K.
, and
Ohkawa
,
K.
,
2005
, “
Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2 System: A Computational Fluid Dynamics Simulation Study
,”
Jpn. J. Appl. Phys.
,
44
, pp.
874
879
. 10.1143/JJAP.44.874
7.
Hu
,
C. K.
,
Chen
,
C. J.
, and
Wei
,
T. C.
,
2016
, “
A Simplified and Universal Mechanism Model for Prediction of Gallium Nitride Thin Film Growth Through Numerical Analysis
,”
IJNTR
,
2
, pp.
07
15
.
8.
Hu
,
C. K.
,
Chen
,
C. J.
,
Wei
,
T. C.
,
Li
,
T. T.
,
Wang
,
C. C.
, and
Huang
,
C. Y.
,
2017
, “
Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth Through Numerical Analysis
,”
Coatings
,
7
, pp.
1
23
. 10.3390/coatings7030043
9.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Ann. Rev. Fluid Mech.
,
23
, pp.
197
232
. 10.1146/annurev.fl.23.010191.001213
10.
Wu
,
B.
,
Ma
,
R.
, and
Zhang
,
H.
,
2003
, “
Epitaxy Growth Kinetics of GaN Films
,”
J. Cryst. Growth
,
250
, pp.
14
21
. 10.1016/S0022-0248(02)02208-X
11.
Kadinski
,
L.
,
Merai
,
V.
,
Parekh
,
A.
,
Ramer
,
J.
,
Armour
,
E. A.
,
Stall
,
R.
,
Gurary
,
A.
,
Galyukov
,
A.
, and
Makarov
,
Y.
,
2004
, “
Computational Analysis of GaN/InGaN Deposition in MOCVD Vertical Rotating Disk Reactors
,”
J. Cryst. Growth
,
261
, pp.
175
181
. 10.1016/j.jcrysgro.2003.11.083
12.
Meng
,
J.
, and
Jaluria
,
Y.
,
2015
, “
Transient Behavior of Thin Film Deposition: Coupling Micro and Macroscale Transport
,”
Num. Heat Transfer
,
68
, pp.
355
368
. 10.1080/10407782.2014.986373
13.
Meng
,
J.
, and
Jaluria
,
Y.
,
2013
, “
Numerical Simulation of GaN Growth in a Metalorganic Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
135
, p.
061013
. 10.1115/1.4025781
14.
Meng
,
J.
,
Wong
,
S.
, and
Jaluria
,
Y.
,
2015
, “
Fabrication of Gallium Nitride Films in a Chemical Vapor Deposition Reactor
,”
J. Ther. Sci. Eng. Appl.
,
7
, p.
021003
. 10.1115/1.4029353
15.
Theodorpoulos
,
C.
,
Mountziaris
,
T. J.
,
Moffat
,
H. K.
, and
Han
,
J.
,
2000
, “
Design of Gas Inlets for the Growth of Gallium Nitride by Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
217
, pp.
65
81
. 10.1016/s0022-0248(00)00402-4
16.
Lin
,
P. T.
,
Jaluria
,
Y.
, and
Gea
,
H. C.
,
2009
, “
Parametric Modeling and Optimization of Chemical Vapor Deposition Process
,”
J. Manu. Sci. Eng.
,
131
, pp.
92
98
. 10.1115/1.3063689
You do not currently have access to this content.