Abstract

Ultrasonic cutting with a straight blade is an advanced method for cutting Nomex honeycomb cores. However, crushing has generally been observed on the machining surface of the honeycomb core during ultrasonic cutting (UC). In this paper, to avoid crushing, a new blade-inclined ultrasonic cutting (BIUC) method is proposed to decrease the geometric interference between the cutting tool and the honeycomb cores. The cutting geometry systems of UC and BIUC with a straight blade are systematically established to study the effect of the cutting geometry on the machining quality. The crushing degrees caused by the major flank under different tool orientations in UC and BIUC are analyzed. The causes of crushing during the machining of the honeycomb core were revealed from the aspects of machining quality, cutting force, and geometric interference between the major flank and the material. Experiments involving the quantitative analysis of the crushing and cutting forces verify that the BIUC method is able to avoid crushing by controlling the cutting angle. This paper provides a new method for solving the crushing problem in machining honeycomb core with a straight blade.

References

1.
Foo
,
C. C.
,
Chai
,
G. B.
, and
Seah
,
L. K.
,
2007
, “
Mechanical Properties of Nomex Material and Nomex Honeycomb Structure
,”
Compos. Struct.
,
80
(
4
), pp.
588
594
. 10.1016/j.compstruct.2006.07.010
2.
Roy
,
R.
,
Park
,
S. J.
,
Kweon
,
J. H.
, and
Choi
,
J. H.
,
2014
, “
Characterization of Nomex Honeycomb Core Constituent Material Mechanical Properties
,”
Compos. Struct.
,
117
(
1
), pp.
255
266
. 10.1016/j.compstruct.2014.06.033
3.
Liu
,
L. Q.
,
Wang
,
H.
, and
Guan
,
Z. W.
,
2015
, “
Experimental and Numerical Study on the Mechanical Response of Nomex Honeycomb Core Under Transverse Loading
,”
Compos. Struct.
,
121
, pp.
304
314
. 10.1016/j.compstruct.2014.11.034
4.
Rion
,
J.
,
Leterrier
,
Y.
, and
Månson
,
J. A. E.
,
2008
, “
Prediction of the Adhesive Fillet Size for Skin to Honeycomb Core Bonding in Ultra-light Sandwich Structures
,”
Compos. Part A Appl. Sci. Manuf.
,
39
(
9
), pp.
1547
1555
. 10.1016/j.compositesa.2008.05.022
5.
Ke
,
Y. L.
, and
Liu
,
G.
,
2005
, “
Attractive Fixture System Based on Magnetic Field and Friction Force for Numerically Controlled Machining of Paper Honeycomb Core
,”
J. Manuf. Sci. Eng.
,
127
(
4
), pp.
901
906
. 10.1115/1.2039944
6.
Wang
,
Y. D.
,
Wang
,
X. P.
,
Kang
,
R. K.
,
Sun
,
J. S.
,
Jia
,
Z. Y.
, and
Dong
,
Z. G.
,
2017
, “
Analysis of Influence on Ultrasonic-Assisted Cutting Force of Nomex Honeycomb Core Material With Straight Knife
,”
Jixie Gongcheng Xuebao/Journal Mech. Eng.
,
53
(
19
), pp.
73
82
. 10.3901/JME.2017.19.073
7.
Kang
,
D.
,
Zou
,
P.
,
Wu
,
H.
,
Duan
,
J. W.
, and
Wang
,
W. J.
,
2019
, “
Study on Ultrasonic Vibration–Assisted Cutting of Nomex Honeycomb Cores
,”
Int. J. Adv. Manuf. Technol.
,
104
(
1–4
), pp.
979
992
. 10.1007/s00170-019-03883-z
8.
Zhang
,
X.
,
Dong
,
Z. G.
,
Wang
,
Y. D.
,
Xu
,
Z. D.
,
Song
,
H. X.
, and
Kang
,
R. K.
,
2017
, “
Charization of Surface Microscopic of Nomex Honeycomb After Ultrasonic Assisted Cutting
,”
Jixie Gongcheng Xuebao/Journal Mech. Eng.
,
53
(
19
), pp.
90
99
. 10.3901/JME.2017.19.090
9.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
. 10.1016/j.ijmachtools.2009.07.013
10.
Arizmendi
,
M.
,
Jiménez
,
A.
,
Cumbicus
,
W. E.
,
Estrems
,
M.
, and
Artano
,
M.
,
2019
, “
Modelling of Elliptical Dimples Generated by Five-Axis Milling for Surface Texturing
,”
Int. J. Mach. Tools Manuf.
,
137
, pp.
79
95
. 10.1016/j.ijmachtools.2018.10.002
11.
Qiu
,
K. X.
,
Ming
,
W. W.
,
Shen
,
L. F.
,
An
,
Q. L.
, and
Chen
,
M.
,
2017
, “
Study on the Cutting Force in Machining of Aluminum Honeycomb Core Material
,”
Compos. Struct.
,
164
, pp.
58
67
. 10.1016/j.compstruct.2016.12.060
12.
Mendoza
,
M. M.
,
Eman
,
K. F.
, and
Wu
,
S. M.
,
1983
, “
Development of a New Milling Cutter for Aluminium Honeycomb
,”
Int. J. Mach. Tool Des. Res.
,
23
(
2–3
), pp.
81
91
. 10.1016/0020-7357(83)90009-4
13.
Xiang
,
D. H.
,
Wu
,
B. F.
,
Yao
,
Y. L.
,
Liu
,
Z. Y.
, and
Feng
,
H. R.
,
2019
, “
Ultrasonic Longitudinal-Torsional Vibration-Assisted Cutting of Nomex® Honeycomb-Core Composites
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1521
1530
. 10.1007/s00170-018-2810-3
14.
Karakoç
,
A.
, and
Freund
,
J.
,
2012
, “
Experimental Studies on Mechanical Properties of Cellular Structures Using Nomex® Honeycomb Cores
,”
Compos. Struct.
,
94
(
6
), pp.
2017
2024
. 10.1016/j.compstruct.2012.01.024
15.
Zhang
,
J.
, and
Ashby
,
M. F.
,
1992
, “
The Out-of-Plane Properties of Honeycombs
,”
Int. J. Mech. Sci.
,
34
(
6
), pp.
475
489
. 10.1016/0020-7403(92)90013-7
16.
Lee
,
H. S.
,
Hong
,
S. H.
,
Lee
,
J. R.
, and
Kim
,
Y. K.
,
2002
, “
Mechanical Behavior and Failure Process During Compressive and Shear Deformation of Honeycomb Composite at Elevated Temperatures
,”
J. Mater. Sci.
,
37
(
6
), pp.
1265
1272
. 10.1023/A:1014344228141
17.
Liu
,
Y.
,
Liu
,
W.
,
Gao
,
W. C.
,
Zhang
,
L. M.
, and
Zhang
,
E. J.
,
2019
, “
Mechanical Responses of a Composite Sandwich Structure With Nomex Honeycomb Core
,”
J. Reinf. Plast. Compos.
,
38
(
13
), pp.
601
615
. 10.1177/0731684419836492
18.
ISO 3002–1:1982/ AMD 1:1992
. Basic Quantities in Cutting and Grinding. Part 1. Geometry of the Active Part of Cutting Tools–General Terms, Reference Systems, Tool and Work Angles, Chip Breaks–Amendment 1, https://www.iso.org/standard/8053.html.
19.
Liu
,
S.
,
Jin
,
S.
,
Zhang
,
X. P.
,
Chen
,
K.
,
Tian
,
A.
, and
Xi
,
L. F.
,
2019
, “
A Coupled Model for the Prediction of Surface Variation in Face Milling Large-Scale Workpiece With Complex Geometry
,”
J. Manuf. Sci. Eng.
,
141
(
3
), pp.
1
14
. 10.1115/1.4042188.
20.
Schuldt
,
S.
,
Arnold
,
G.
,
Kowalewski
,
J.
,
Schneider
,
Y.
, and
Rohm
,
H.
,
2016
, “
Analysis of the Sharpness of Blades for Food Cutting
,”
J. Food Eng.
,
188
, pp.
13
20
. 10.1016/j.jfoodeng.2016.04.022
You do not currently have access to this content.