Abstract

Motivated by cyber-physical vulnerabilities in precision manufacturing processes, there is a need to externally examine the operational performance of computer numerically controlled (CNC) manufacturing systems. The overarching objective of this work is to design and fabricate a proof-of-concept CNC machine evaluation device, ultimately re-configurable to the mill, lathe, and 3D printing machine classes. This device will assist in identifying potential cyber-physical security threats in manufacturing systems by identifying perturbations outside the expected variations of machining processes and comparing the desired command inputted into the numerical controller and the actual machine performance (e.g., tool displacement, frequency). In this paper, a requirement-driven prototype device design method is presented and tested, and the results will be used to improve future iterations of the design. The first design iteration is tested on a Kuka KR 6 R700 series robotic arm, and machine movement comparisons are performed ex situ using Keyence laser measurement sensors. Data acquisition is performed with a Raspberry Pi 4 microcomputer, controlled by custom, cross-platform python code, and includes a touch screen human–computer interface (HCI). A device design adapted for a CNC mill is also presented, and the Haas TM-2 is used as a case study, which can be operated by CNC operators to assess machine performance, as needed, before a critical manufacturing process. This research will enable the broader goal of recognizing repeating advanced manufacturing performance deviations, which occur outside of a machine's normal variability, that could signal a malicious “attack.”

References

1.
Majstorovic
,
V.
,
Macuzic
,
J.
,
Sibalija
,
T.
, and
Zivkovic
,
S.
,
2015
, “
Cyber-Physical Manufacturing Systems-Manufacturing Metrology Aspects
,”
Proc. Manuf. Syst.
,
10
(
1
), p.
9
.
2.
Giri
,
J.
,
Sun
,
D.
, and
Avila-Rosales
,
R.
,
2009
, “
Wanted: A More Intelligent Grid
,”
IEEE Power Energy Mag.
,
7
(
2
), pp.
34
40
.
3.
Bodenheim
,
R.
,
Butts
,
J.
,
Dunlap
,
S.
, and
Mullins
,
B.
,
2014
, “
Evaluation of the Ability of the Shodan Search Engine to Identify Internet-Facing Industrial Control Devices
,”
Int. J. Crit. Infrastruct. Protect.
,
7
(
2
), pp.
114
123
.
4.
Wu
,
M.
,
Song
,
Z.
, and
Moon
,
Y. B.
,
2019
, “
Detecting Cyber-Physical Attacks in CyberManufacturing Systems With Machine Learning Methods
,”
J. Intell. Manuf.
,
30
(
3
), pp.
1111
1123
.
5.
Kelley
,
M. B.
,
2013
, “
The Stuxnet Attack on Iran's Nuclear Plant Was “Far More Dangerous” Than Previously Thought
,”
Business Insider, 20
.
6.
Lee
,
R. M.
,
Assante
,
M. J.
, and
Conway
,
T.
,
2014
, “
German steel mill cyber attack
,”
Industrial Control Systems
, 30, p.
62
.
7.
Schwenke
,
H.
,
Knapp
,
W.
,
Haitjema
,
H.
,
Weckenmann
,
A.
,
Schmitt
,
R.
, and
Delbressine
,
F.
,
2008
, “
Geometric Error Measurement and Compensation of Machines—An Update
,”
CIRP Ann.
,
57
(
2
), pp.
660
675
.
8.
Araie
,
I.
, and
Akemura
,
O.
,
1996
, “
Method and Apparatus for Correcting Positioning Errors on a Machine Tool
,”
Google Patents
.
9.
Fines
,
J. M.
, and
Agah
,
A.
,
2008
, “
Machine Tool Positioning Error Compensation Using Artificial Neural Networks
,”
Eng. Appl. Artif. Intell.
,
21
(
7
), pp.
1013
1026
.
10.
Raksiri
,
C.
, and
Parnichkun
,
M.
,
2004
, “
Geometric and Force Errors Compensation in a 3-Axis CNC Milling Machine
,”
Int. J. Mach. Tools Manuf.
,
44
(
12–13
), pp.
1283
1291
.
11.
Ziegert
,
J. C.
, and
Kalle
,
P.
,
1994
, “
Error Compensation in Machine Tools: A Neural Network Approach
,”
J. Intell. Manuf.
,
5
(
3
), pp.
143
151
.
12.
Prasad
,
V.
, and
Kamala
,
V.
,
2020
, “
Thermal Error Compensation in High-Speed CNC Machine Feed Drives
,”
Proceedings of the AIP Conference Proceedings
,
Hyderabad, India
,
July 24–25
,
AIP Publishing
,
Melville, NY
.
13.
Vuola
,
A.
, and
Tuokko
,
R.
, Accuracy Measurements of Miniature Robot Using Optical CMM,”
Proceedings of the Precision Assembly Technologies and Systems
,
S.
Ratchev
, ed.,
Springer
,
Berlin
, pp.
126
133
.
14.
Shirinzadeh
,
B.
,
Teoh
,
P. L.
,
Tian
,
Y.
,
Dalvand
,
M. M.
,
Zhong
,
Y.
, and
Liaw
,
H. C.
,
2010
, “Laser Interferometry-Based Guidance Methodology for High Precision Positioning of Mechanisms and Robots,”
Robot. Comput. Int. Manuf.
,
26
(
1
), pp.
74
82
.
15.
Płaczek
,
M.
, and
Piszczek
,
Ł
,
2018
, “
Testing of an Industrial Robot’s Accuracy and Repeatability in Off and Online Environment
,”
Eksploatacja Niezawodnosc Maint. Reliab.
,
20
(
3
), pp.
455
464
.
16.
Mayer
,
R.
, and
Parker
,
G.
,
1994
, “
Portable Instrument for 3-D Dynamic Robot Measurements Using Triangulation and Laser Tracking
,”
IEEE Trans. Rob. Autom.
,
10
(
4
), pp.
504
516
.
17.
Kluz
,
R.
, and
Trzepieciński
,
T.
,
2014
, “
The Repeatability Positioning Analysis of the Industrial Robot arm
,”
Assembly Autom.
,
34
(
3
), pp.
455
464
.
18.
Hoffmann
,
C.
,
1988
, “
Accuracy-Tests for Industrial Robots
,”
IFAC Proc. Vol.
,
21
(
16
), pp.
103
108
.
19.
Du
,
G.
, and
Zhang
,
P.
,
2013
, “
Online Robot Calibration Based on Vision Measurement
,”
Robot. Comput. Integr. Manuf.
,
29
(
6
), pp.
484
492
.
20.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2005
, “
A Systematic Technique to Estimate Positioning Errors for Robot Accuracy Improvement Using Laser Interferometry Based Sensing
,”
Mech. Mach. Theory
,
40
(
8
), pp.
879
906
.
21.
Gierlak
,
P.
,
2021
, “
Adaptive Position/Force Control of a Robotic Manipulator in Contact With a Flexible and Uncertain Environment
,”
Robotics
,
10
(
1
), p.
32
.
22.
Mahapatra
,
P. K.
,
Thareja
,
R.
,
Kaur
,
M.
, and
Kumar
,
A.
,
2015
, “
A Machine Vision System for Tool Positioning and its Verification
,”
Meas. Control
,
48
(
8
), pp.
249
260
.
23.
Kulkarni
,
O. P.
,
Islam
,
M. N.
, and
Terry
,
F. L.
,
2010
, “
Optical Probe for Porosity Defect Detection on Inner Diameter Surfaces of Machined Bores
,”
Opt. Eng.
,
49
(
12
), p.
123606
.
24.
Tong
,
Q.-b.
,
Jiao
,
C.-q.
,
Huang
,
H.
,
Li
,
G.-b.
,
Ding
,
Z.-l.
, and
Yuan
,
F.
,
2014
, “
An Automatic Measuring Method and System Using Laser Triangulation Scanning for the Parameters of a Screw Thread
,”
Meas. Sci. Technol.
,
25
(
3
), p.
035202
.
25.
Zhang
,
F.
,
Qu
,
X.
, and
Ouyang
,
J.
,
2012
, “
An Automated Inner Dimensional Measurement System Based on a Laser Displacement Sensor for Long-Stepped Pipes
,”
Sensors
,
12
(
5
), pp.
5824
5834
.
26.
Alvarez
,
I.
,
Enguita
,
J. M.
,
Frade
,
M.
,
Marina
,
J.
, and
Ojea
,
G.
,
2009
, “
On-line Metrology With Conoscopic Holography: Beyond Triangulation
,”
Sensors
,
9
(
9
), pp.
7021
7037
.
27.
Boltryk
,
P. J.
,
Hill
,
M.
,
McBride
,
J. W.
, and
Nasce
,
A.
,
2008
, “
A Comparison of Precision Optical Displacement Sensors for the 3D Measurement of Complex Surface Profiles
,”
Sens. Actuators, A
,
142
(
1
), pp.
2
11
.
28.
Brosed
,
F.
,
Santolaria
,
J.
,
Aguilar
,
J.
, and
Guillomía
,
D.
,
2012
, “
Laser Triangulation Sensor and Six Axes Anthropomorphic Robot Manipulator Modelling for the Measurement of Complex Geometry Products
,”
Robot. Comput. Integr. Manuf.
,
28
(
6
), pp.
660
671
.
29.
Ito
,
S.
,
Matsuura
,
D.
,
Meguro
,
T.
,
Goto
,
S.
,
Shimizu
,
Y.
,
Gao
,
W.
,
Adachi
,
S.
, and
Omiya
,
K.
,
2014
, “
On-Machine Form Measurement of High Precision Ceramics Parts by Using a Laser Displacement Sensor
,”
J. Adv. Mech. Des. Syst. Manuf.
,
8
(
4
), p.
JAMDSM0048
.
30.
Kondo
,
Y.
,
Hasegawa
,
K.
,
Kawamata
,
H.
,
Morishita
,
T.
, and
Naito
,
F.
,
2012
, “
On-Machine Non-Contact Dimension-Measurement System with Laser Displacement Sensor for Vane-tip Machining of RFQs
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
667
(
1
), pp.
5
10
.
31.
Mekid
,
S.
, and
Vacharanukul
,
K.
,
2011
, “
In-Process Out-of-Roundness Measurement Probe for Turned Workpieces
,”
Measurement
,
44
(
4
), pp.
762
766
.
32.
Murugarajan
,
A.
, and
Samuel
,
G.
,
2015
, “
Characterization of Dimensional Features of Mesoscale Component Using Capacitive Sensor
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9–12
), pp.
1831
1849
.
33.
Vacharanukul
,
K.
, and
Mekid
,
S.
,
2005
, “
In-Process Dimensional Inspection Sensors
,”
Measurement
,
38
(
3
), pp.
204
218
.
34.
Gupta
,
N.
,
Fei
,
C.
,
Tsoutsos
,
N. G.
, and
Maniatakos
,
M.
, “
INVITED: ObfusCADe: Obfuscating Additive Manufacturing CAD Models Against Counterfeiting
,”
Proceedings of the 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC)
,
Austin, TX
,
June 18–22
, pp.
1
6
.
35.
Msallem
,
B.
,
Sharma
,
N.
,
Cao
,
S.
,
Halbeisen
,
F.
,
Zeilhofer
,
H.-F.
, and
Thieringer
,
F.
,
2020
, “
Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology
,”
J. Clin. Med.
,
9
(
3
), p.
817
.
36.
Odeh
,
M.
,
Levin
,
D.
,
Inziello
,
J.
,
Lobo
,
F.
,
Mathur
,
M.
,
Hermsen
,
J.
,
Stubbs
,
J.
, and
Ripley
,
B.
,
2019
, “
Methods for Verification of 3D Printed Anatomic Model Accuracy Using Cardiac Models as an Example
,”
3D Print. Med.
,
5
(
1
), pp.
6
.
37.
Jeong
,
Y.-G.
,
Lee
,
W.-S.
, and
Lee
,
K.-B.
,
2018
, “
Accuracy Evaluation of Dental Models Manufactured by CAD/CAM Milling Method and 3D Printing Method
,”
J. Adv. Prosthodont.
,
10
(
3
), p.
245
.
38.
Wichniarek
,
R.
,
Górski
,
F.
,
Kuczko
,
W.
,
Zawadzki
,
P.
, and
Buń
,
P.
,
2017
, “
Dimensional Accuracy of Parts Manufactured by 3D Printing for Interaction in Virtual Reality
,”
Adv. Sci. Technol. Res. J.
,
11
(
4
), pp.
279
285
.
39.
George
,
E.
,
Liacouras
,
P.
,
Rybicki
,
F.
, and
Mitsouras
,
D.
,
2017
, “
Measuring and Establishing the Accuracy and Reproducibility of 3D Printed Medical Models
,”
Radiographics
,
37
(
5
), pp.
1424
1450
.
40.
Islam
,
N.
,
Boswell
,
B.
, and
Pramanik
,
A.
,
2013
, “
An Investigation of Dimensional Accuracy of Parts Produced by Three-Dimensional Printing
,”
Lect. Notes Eng. Comput. Sci.
,
1
(
1
), pp.
522
525
.
41.
Keming
,
W.
,
16 October 2006
, “
Neural Network Approach to Vibration Feature Selection and Multiple Fault Detection for Mechanical Systems
,”
Proceedings of the First International Conference on Innovative Computing, Information and Control—Volume I (ICICIC'06)
,
Beijing, China
,
Aug. 30–Sept. 1
, pp.
431
434
.
42.
Tan
,
Y.
,
Zhou
,
Z.
,
Dong
,
R.
, and
He
,
H.
,
2013
, “
Fault Detection of Mechanical Systems With Inherent Backlash
.”
43.
Singh
,
S.
, and
Kumar
,
N.
,
2016
, “
Detection of Bearing Faults in Mechanical Systems Using Stator Current Monitoring
,”
IEEE Trans. Ind. Inf.
,
13
(
3
), pp.
1341
1349
.
44.
Siguencia
,
J. F.
,
Cerrada
,
M.
,
Cabrera
,
D.
, and
Sánchez
,
R. V.
,
01 December 2020
, “
SOA Based Smartphone System for the Fault Detection in Rotating Machines
,”
Proceedings of the 2020 IEEE ANDESCON
,
Quito, Ecuador
,
Oct. 13–16
, pp.
1
6
.
45.
Wang
,
X.
, and
Dunston
,
P. S.
,
2011
, “
Comparative Effectiveness of Mixed Reality-Based Virtual Environments in Collaborative Design
,”
IEEE Trans. Syst. Man Cybern.
,
41
(
3
), pp.
284
296
.
46.
Airwolf 3D
2020
, “
Airwolf 3D, Fountain Valley, CA
,” https://airwolf3d.com/shop/industrial-3d-printer
47.
Dahlquist
,
G.
,
Bjorck
,
A.
, and
Anderson
,
N.
,
1974
,
Numerical Methods
,
PrenticeHall, Inc.
,
Englewood Cliffs, NJ
.
48.
Turpin
,
K.
,
2010
, “
OWASP Secure Coding Practices-Quick Reference Guide
.”
You do not currently have access to this content.