Abstract

Trochoidal (TR) milling is a popular means for slotting operation. Attributing to its unique circular-shaped path pattern, TR milling avoids the full tool–workpiece engagement, which helps reduce the cutting heat accumulation and hence slow down the tool wear. While traditionally TR milling is only used for machining 2.5D cavities, it has now been extended to machining genuine 3D curved cavities under the realm of five-axis machining. However, since for a typical five-axis machine tool the rotary axes have a much larger moment of inertia than the three linear axes, to reduce both the total machining time and the consumed electric energy (for driving the machine tool), it is desirable to minimize the use of the two rotary axes (particularly the one with the larger moment of inertia) when planning a TR tool path for a given 3D cavity. Nevertheless, due to the newness of five-axis TR machining, there has no published reports on this subject. In this paper, we present a five-axis TR tool path planning algorithm for machining an arbitrary 3D curved cavity, which will consider the kinematical characteristics of the five-axis machine tool and try to minimize the use of the rotary axis with the largest moment of inertia, while tending to all the required constraints such as the threshold on the cutting force. Both computer simulation and physical cutting experiments of the proposed method have been conducted, and the results give a preliminary confirmation on the feasibility and advantages of the proposed method.

References

1.
Kardes
,
N.
, and
Altintas
,
Y.
,
2007
, “
Mechanics and Dynamics of the Circular Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
21
31
.
2.
Xu
,
K.
,
Wu
,
B.
,
Li
,
Z.
, and
Tang
,
K.
,
2019
, “
Time-Efficient Trochoidal Tool Path Generation for Milling Arbitrary Curved Slots
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031008
.
3.
Pleta
,
A.
, and
Mears
,
L.
,
2016
, “
Cutting Force Investigation of Trochoidal Milling in Nickel-Based Superalloy
,”
Procedia Manuf.
,
5
, pp.
1348
1356
.
4.
Wu
,
B.
,
Zheng
,
C.
,
Luo
,
M.
, and
He
,
X.
,
2012
, “Investigation of Trochoidal Milling Nickel-Based Superalloy,”
Materials Science Forum
, vol. 723,
Trans Tech Publications Ltd
, pp.
332
336
.
5.
Ibaraki
,
S.
,
Yamaji
,
I.
, and
Matsubara
,
A.
,
2010
, “
On the Removal of Critical Cutting Regions by Trochoidal Grooving
,”
Precis. Eng.
,
34
(
3
), pp.
467
473
.
6.
Otkur
,
M.
, and
Lazoglu
,
I.
,
2007
, “
Trochoidal Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1324
1332
.
7.
Wu
,
B.
,
Yan
,
X.
,
Luo
,
M.
, and
Gao
,
G.
,
2013
, “
Cutting Force Prediction for Circular End Milling Process
,”
Chin. J. Aeronaut.
,
26
(
4
), pp.
1057
1063
.
8.
Akhavan Niaki
,
F.
,
Pleta
,
A.
, and
Mears
,
L.
,
2018
, “
Trochoidal Milling: Investigation of a New Approach on Uncut Chip Thickness Modeling and Cutting Force Simulation in an Alternative Path Planning Strategy
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
641
656
.
9.
Wu
,
S.
,
Ma
,
W.
,
Li
,
B.
, and
Wang
,
C.
,
2016
, “
Trochoidal Machining for the High-Speed Milling of Pockets
,”
J. Mater. Process. Technol.
,
233
, pp.
29
43
.
10.
Rauch
,
M.
,
Duc
,
E.
, and
Hascoet
,
J. Y.
,
2009
, “
Improving Trochoidal Tool Paths Generation and Implementation Using Process Constraints Modelling
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
375
383
.
11.
Yan
,
R.
,
Li
,
H.
,
Peng
,
F.
,
Tang
,
X.
,
Xu
,
J.
, and
Zeng
,
H.
,
2017
, “
Stability Prediction and Step Optimization of Trochoidal Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091006
.
12.
Wang
,
Q.-H.
,
Wang
,
S.
,
Jiang
,
F.
, and
Li
,
J.-R.
,
2016
, “
Adaptive Trochoidal Toolpath for Complex Pockets Machining
,”
Int. J. Prod. Res.
,
54
(
20
), pp.
5976
5989
.
13.
Elber
,
G.
,
Cohen
,
E.
, and
Drake
,
S.
,
2005
, “
MATHSM: Medial Axis Transform Toward High Speed Machining of Pockets
,”
Comput. Aided Des.
,
37
(
2
), pp.
241
250
.
14.
Salehi
,
M.
,
Blum
,
M.
,
Fath
,
B.
,
Akyol
,
T.
,
Haas
,
R.
, and
Ovtcharova
,
J.
,
2016
, “
Epicycloidal Versus Trochoidal Milling-Comparison of Cutting Force, Tool Tip Vibration, and Machining Cycle Time
,”
Procedia CIRP
,
46
, pp.
230
233
.
15.
Li
,
Z.
,
Xu
,
K.
, and
Tang
,
K.
,
2019
, “
A New Trochoidal Pattern for Slotting Operation
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1153
1163
.
16.
Luo
,
M.
,
Hah
,
C.
, and
Hafeez
,
H. M.
,
2019
, “
Four-Axis Trochoidal Toolpath Planning for Rough Milling of Aero-Engine Blisks
,”
Chin. J. Aeronaut.
,
32
(
8
), pp.
2009
2016
.
17.
Li
,
Z.
,
Chen
,
L.
,
Xu
,
K.
,
Gao
,
Y.
, and
Tang
,
K.
,
2020
, “
Five-Axis Trochoidal Flank Milling of Deep 3D Cavities
,”
Comput. Aided Des.
,
119
.
18.
Li
,
Z.
,
Hu
,
P.
,
Xie
,
F.
, and
Tang
,
K.
,
2021
, “
A Variable-Depth Multi-Layer Five-Axis Trochoidal Milling Method for Machining Deep Freeform 3D Slots
,”
Rob. Comput. Integr. Manuf.
,
68
, p.
102093
.
19.
Gao
,
S.
,
Chen
,
J.
,
Liu
,
S.
,
Yuan
,
X.
,
Hu
,
P.
, and
Yang
,
J.
,
2019
, “
Design and Kinematic Analysis of a Novel Machine Tool With Four Rotational Axes and One Translational Axis
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
111009
.
20.
Mansour
,
S. Z.
, and
Seethaler
,
R.
,
2017
, “
Feedrate Optimization for Computer Numerically Controlled Machine Tools Using Modeled and Measured Process Constraints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011012
.
21.
Hu
,
P.
, and
Tang
,
K.
,
2011
, “
Improving the Dynamics of Five-Axis Machining Through Optimization of Workpiece Setup and Tool Orientations
,”
Comput. Aided Des.
,
43
(
12
), pp.
1693
1706
.
22.
Hu
,
P.
,
Tang
,
K.
, and
Lee
,
C. H.
,
2013
, “
Global Obstacle Avoidance and Minimum Workpiece Setups in Five-Axis Machining
,”
Comput. Aided Des.
,
45
(
10
), pp.
1222
1237
.
23.
Xu
,
K.
, and
Li
,
Y.
,
2019
, “
Region Based Five-Axis Tool Path Generation for Freeform Surface Machining Via Image Representation
,”
Rob. Comput. Integr. Manuf.
,
57
, pp.
230
240
.
24.
Gong
,
H.
, and
Wang
,
N.
,
2009
, “
Optimize Tool Paths of Flank Milling With Generic Cutters Based on Approximation Using the Tool Envelope Surface
,”
Comput. Aided Des.
,
41
(
12
), pp.
981
989
.
25.
Wang
,
N.
, and
Tang
,
K.
,
2008
, “
Five-Axis Tool Path Generation for a Flat-End Tool Based on Iso-Conic Partitioning
,”
Comput. Aided Des.
,
40
(
12
), pp.
1067
1079
.
26.
Coleman
,
T.
,
Branch
,
M. A.
and
Grace
,
A.
, 1999, “Optimization Toolbox,” For Use with MATLAB, User's Guide for MATLAB 5, Version 2, Release II.
27.
Zhou
,
Y.
,
Chen
,
Z. C.
, and
Yang
,
X.
,
2015
, “
An Accurate, Efficient Envelope Approach to Modeling the Geometric Deviation of the Machined Surface for a Specific Five-Axis CNC Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
67
77
.
28.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Applications—Part II: Optimization and Feedrate Scheduling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), pp.
0510051
05100510
.
29.
Yan
,
X.
,
Shirase
,
K.
,
Hirao
,
M.
, and
Yasui
,
T.
,
2000
, “
Evaluation and Improvement of Productivity in High-Speed Nc Machining
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
556
561
.
30.
Larue
,
A.
, and
Altintas
,
Y.
,
2005
, “
Simulation of Flank Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
549
559
.
31.
Xu
,
K.
, and
Tang
,
K.
,
2017
, “
Optimal Workpiece Setup for Time-Efficient and Energy-Saving Five-Axis Machining of Freeform Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051003
.
32.
Boettjer
,
T.
,
Krogshave
,
J. T.
, and
Ramanujan
,
D.
,
2021
, “
Machine-Specific Estimation of Milling Energy Consumption in Detailed Design
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081010
.
You do not currently have access to this content.