Abstract

Additive manufacturing (AM) process of maraging steel has been studied for high value parts in aerospace and automotive industries. The hybrid additive/subtractive manufacturing is effective to achieve tight tolerances and surface finishes. The additive process induces anisotropic mechanical properties of maraging steel, which depends on the laser scanning direction. Because anisotropy in the workpiece material has an influence on the cutting process, the surface finish and the dimension accuracy change according to the direction of the cutter feed with respect to the laser scanning direction. Therefore, the cutting parameters should be determined to control the cutting force considering material anisotropy. The paper discusses the cutting force in milling of maraging steel stacked with selective laser melting, as an AM process. Anisotropic effect on the cutting forces is proved with the changing rate of the cutting force in milling of the workpieces stacked by repeating laser scanning at 0/90 deg and 45/−45 deg. The cutting forces, then, are analyzed in the chip flow models with piling up of orthogonal cuttings. The force model associates anisotropy with the shear stress on the shear plane. The changes in the cutting forces with the feed direction are discussed in the cutting tests and analysis.

References

1.
Tofail
,
S. A. M.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.
2.
Ullah
,
R.
,
Akmal
,
J. S.
,
Laakso
,
S.
, and
Niemi
,
E.
,
2020
, “
Anisotropy of Additively Manufactured 18Ni-300 Maraging Steel: Threads and Surface Characteristics
,”
Procedia CIRP
,
93
, pp.
68
78
.
3.
Du
,
W.
,
Bai
,
Q.
, and
Zhang
,
B.
,
2018
, “
Machining Characteristics of 18Ni-300 Steel in Additive/Subtractive Hybrid Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2509
2519
.
4.
Meneghetti
,
G.
,
Rigon
,
D.
,
Cozzi
,
D.
,
Waldhauser
,
W.
, and
Dabalà
,
M.
,
2017
, “
Influence of Build Orientation on Static and Axial Fatigue Properties of Maraging Steel Specimens Produced by Additive Manufacturing
,”
Procedia Struct. Integr.
,
7
, pp.
149
157
.
5.
Kok
,
Y.
,
Tan
,
X. P.
,
Wang
,
P.
,
Nai
,
M. L. S.
,
Loh
,
N. H.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2018
, “
Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review
,”
Mater. Des.
,
139
, pp.
565
586
.
6.
Bai
,
Y.
,
Zhao
,
C.
,
Yang
,
J.
,
Hong
,
R.
,
Weng
,
C.
, and
Wang
,
H.
,
2021
, “
Microstructure and Machinability of Selective Laser Melted High-Strength Maraging Steel With Heat Treatment
,”
J. Mater. Process. Technol.
,
288
, p.
116906
.
7.
Heigel
,
J. C.
,
Phan
,
T. Q.
,
Fox
,
J. C.
, and
Gnaupel-Herold
,
T. H.
,
2018
, “
Experimental Investigation of Residual Stress and Its Impact on Machining in Hybrid Additive/Subtractive Manufacturing
,”
Procedia Manuf.
,
26
, pp.
929
940
.
8.
Montevecchi
,
F.
,
Grossi
,
N.
,
Takagi
,
H.
,
Scippa
,
A.
,
Sasahara
,
H.
, and
Campatelli
,
G.
,
2016
, “
Cutting Forces Analysis in Additive Manufactured ` H13 Alloy
,”
Procedia CIRP
,
46
, pp.
476
479
.
9.
Allegri
,
G.
,
Colpani
,
A.
,
Ginestra
,
P. S.
, and
Attanasio
,
A.
,
2019
, “
An Experimental Study on Micro-Milling of a Medical Grade Co–Cr–Mo Alloy Produced by Selective Laser Melting
,”
Materials
,
12
(
13)
, p.
2208
.
10.
Grove
,
T.
,
Denkena
,
B.
,
Maiß
,
O.
,
Krödel
,
A.
,
Schwab
,
H.
, and
Kühn
,
U.
,
2018
, “
Cutting Mechanism and Surface Integrity in Milling of Ti-5553 Processed by Selective Laser Melting
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
4883
4892
.
11.
Sha
,
W.
, and
Guo
,
Z.
,
2009
,
Maraging steels, Modeling of Microstructure, Properties and Applications, 1–Introduction to Maraging Steels
,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
1
16
.
12.
Brown
,
C. U.
, and
Donmez
,
A.
,
2016
, “
Microstructure Analysis for Additive Manufacturing: A Review of Existing Standards
,”
Advanced Manufacturing Series (NIST AMS)
.
13.
Yao
,
Y.
,
Wang
,
K.
,
Wang
,
X.
,
Li
,
L.
,
Cai
,
W.
,
Kelly
,
S.
,
Esparragoza
,
N.
,
Rosser
,
M.
, and
Yan
,
F.
,
2020
, “
Microstructural Heterogeneity and Mechanical Anisotropy of 18Ni-330 Maraging Steel Fabricated by Selective Laser Melting: The Effect of Build Orientation and Height
,”
J. Mater. Res.
,
35
(
15
), pp.
2065
2076
.
14.
Tan
,
C.
,
Zhou
,
K.
,
Kuang
,
M.
,
Ma
,
W.
, and
Kuang
,
T.
,
2018
, “
Microstructural Characterization and Properties of Selective Laser Melted Maraging Steel With Different Build Directions
,”
Sci. Technol. Adv. Mater.
,
19
(
1
), pp.
746
758
.
15.
Fortunato
,
A.
,
Lulaj
,
A.
,
Melkote
,
S.
,
Liverani
,
E.
,
Ascari
,
A.
, and
Umbrello
,
D.
,
2018
, “
Milling of Maraging Steel Components Produced by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
1895
1902
.
16.
Matsumura
,
T.
, and
Usui
,
E.
,
2010
, “
Predictive Cutting Force Model in Complex-Shaped End Milling Based on Minimum Cutting Energy
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
458
466
.
17.
Matsumura
,
T.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
2010
, “
Adaptive Cutting Force Prediction in Milling Processes
,”
Int. J. Autom. Technol.
,
4
(
3
), pp.
221
228
.
You do not currently have access to this content.