Abstract

Serrated milling tools are widely used for chatter suppression in roughing difficult-to-cut Titanium and Nickel alloys in the aerospace industry. Due to the complexity of chip generation and serration wave geometries ground on the flutes, the chatter stability diagrams are predicted with time marching numerical simulation or semi-discrete time-domain methods, which are computationally too costly to use in practice. This paper presents a frequency domain model of milling dynamics with variable delays caused by the flute serrations. The endmill is divided into discrete cylindrical elements, each having a different radius from the cutter axis. As the cutter rotates and cuts metal, the angular distance between the subsequent tooth varies as a function of serration amplitudes and feedrate; hence, the regenerative delays vary. The angular delays and effective directional factors are averaged for each tooth to form a time-independent but serration-dependent characteristics equation for all discrete cutter elements. The stability of the resulting characteristic equation of the system is solved using Nyquist theory and compared against the experimental results and existing time marching and semi-discrete time-domain solutions. The proposed analytical model predicts the stability charts about 30 times faster than the time-domain models while providing acceptable accuracy.

References

1.
Tlusty
,
J.
,
Ismail
,
F.
, and
Zaton
,
W.
,
1983
, “
Use of Special Milling Cutters Against Chatter, University of Wisconsin, Society of Manufacturing Engineers
,”
Proceedings of NAMRC 11
, pp.
408
415
.
2.
Merdol
,
D.
, and
Altintas
,
Y.
,
2004
, “
Mechanics and Dynamics of Serrated Cylindrical and Tapered Endmills
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
317
326
.
3.
Hosseini
,
A.
,
Moetakef-Imani
,
B.
, and
Kishawy
,
H. A.
,
2011
, “
Mechanistic Modelling for Cutting With Serrated End Mills–A Parametric Representation Approach
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
225
(
7
), pp.
1019
1032
.
4.
Bari
,
P.
,
Law
,
M.
, and
Wahi
,
P.
,
2020
, “
Geometric Models of Non-Standard Serrated end Mills
,”
Int. J. Adv. Manuf. Technol.
,
111
(
11
), pp.
3319
3342
.
5.
Tehranizadeh
,
F.
,
Koca
,
R.
, and
Budak
,
E.
,
2019
, “
Investigating Effects of Serration Geometry on Milling Forces and Chatter Stability for Their Optimal Selection
,”
Int. J. Mach. Tools Manuf.
,
144
, p.
103425
.
6.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann.
,
65
(
2
), pp.
785
808
.
7.
Altintas
,
Y.
,
Stepan
,
G.
,
Budak
,
E.
,
Schmitz
,
T.
, and
Kilic
,
Z. M.
,
2020
, “
Chatter Stability of Machining Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110801
.
8.
Montgomery
,
D.
, and
Altintas
,
Y.
,
1991
, “
Mechanism of Cutting Force and Surface Generation in Dynamic Milling
,”
J. Eng. Ind.
,
113
(
2
), pp.
160
168
.
9.
Ferry
,
W. B.
, and
Altintas
,
Y.
,
2008
, “
Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011005
.
10.
Sims
,
N. D.
,
Mann
,
B.
, and
Huyanan
,
S.
,
2008
, “
Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools
,”
J. Sound Vib.
,
317
(
3–5
), pp.
664
686
.
11.
Dombovari
,
Z.
,
Altintas
,
Y.
, and
Stepan
,
G.
,
2010
, “
The Effect of Serration on Mechanics and Stability of Milling Cutters
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
511
520
.
12.
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2016
, “
Generalized Mechanics and Dynamics of Metal Cutting Operations for Unified Simulations
,”
Int. J. Mach. Tools Manuf.
,
104
, pp.
1
13
.
13.
Fu
,
H.-J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1984
, “
A Mechanistic Model for the Prediction of the Force System in Face Milling Operations
,”
J. Eng. Ind.
,
106
(
1
), pp.
81
88
.
14.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
.
15.
Altintaş
,
Y.
,
Shamoto
,
E.
,
Lee
,
P.
, and
Budak
,
E.
,
1999
, “
Analytical Prediction of Stability Lobes in Ball End Milling.
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
586
592
.
16.
Altintas
,
Y.
,
Stépán
,
G.
,
Merdol
,
D.
, and
Dombóvári
,
Z.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete-Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
.
17.
Stépán
,
G.
,
Munoa
,
J.
,
Insperger
,
T.
,
Surico
,
M.
,
Bachrathy
,
D.
, and
Dombóvári
,
Z.
,
2014
, “
Cylindrical Milling Tools: Comparative Real Case Study for Process Stability
,”
CIRP Ann.
,
63
(
1
), pp.
385
388
.
18.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part 1: General Formulation
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
22
30
.
19.
Altintaş
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
,
1999
, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
173
178
.
20.
No
,
T.
,
Gomez
,
M.
,
Copenhaver
,
R.
,
Perez
,
J. U.
,
Tyler
,
C.
, and
Schmitz
,
T. L.
,
2019
, “
Scanning and Modeling for Non-Standard Edge Geometry Endmills
,”
Procedia Manuf.
,
34
(
NAMRC 47
), pp.
305
315
.
You do not currently have access to this content.